These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 19487189)

  • 1. Influence of the interstimulus interval on temporal processing and learning: testing the state-dependent network model.
    Buonomano DV; Bramen J; Khodadadifar M
    Philos Trans R Soc Lond B Biol Sci; 2009 Jul; 364(1525):1865-73. PubMed ID: 19487189
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Timing in the absence of clocks: encoding time in neural network states.
    Karmarkar UR; Buonomano DV
    Neuron; 2007 Feb; 53(3):427-38. PubMed ID: 17270738
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temporal specificity of perceptual learning in an auditory discrimination task.
    Karmarkar UR; Buonomano DV
    Learn Mem; 2003; 10(2):141-7. PubMed ID: 12663752
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The neural basis of temporal processing.
    Mauk MD; Buonomano DV
    Annu Rev Neurosci; 2004; 27():307-40. PubMed ID: 15217335
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using adaptive psychophysics to identify the neural network reset time in subsecond interval timing.
    Sadibolova R; Sun S; Terhune DB
    Exp Brain Res; 2021 Dec; 239(12):3565-3572. PubMed ID: 34581840
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dose-dependent deficits in dual interstimulus interval classical eyeblink conditioning tasks following neonatal binge alcohol exposure in rats.
    Brown KL; Calizo LH; Stanton ME
    Alcohol Clin Exp Res; 2008 Feb; 32(2):277-93. PubMed ID: 18162069
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Learning temporal context shapes prestimulus alpha oscillations and improves visual discrimination performance.
    Toosi T; K Tousi E; Esteky H
    J Neurophysiol; 2017 Aug; 118(2):771-777. PubMed ID: 28515289
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Timing as an intrinsic property of neural networks: evidence from in vivo and in vitro experiments.
    Goel A; Buonomano DV
    Philos Trans R Soc Lond B Biol Sci; 2014 Mar; 369(1637):20120460. PubMed ID: 24446494
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Individual differences in first- and second-order temporal judgment.
    Corcoran AW; Groot C; Bruno A; Johnston A; Cropper SJ
    PLoS One; 2018; 13(2):e0191422. PubMed ID: 29401520
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Perceptual-learning evidence for inter-onset-interval- and frequency-specific processing of fast rhythms.
    Ning R; Trosman SJ; Sabin AT; Wright BA
    Atten Percept Psychophys; 2019 Feb; 81(2):533-542. PubMed ID: 30488189
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mind the gap: temporal discrimination and dystonia.
    Sadnicka A; Daum C; Cordivari C; Bhatia KP; Rothwell JC; Manohar S; Edwards MJ
    Eur J Neurol; 2017 Jun; 24(6):796-806. PubMed ID: 28544409
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cross-modal transfer of the conditioned eyeblink response during interstimulus interval discrimination training in young rats.
    Brown KL; Stanton ME
    Dev Psychobiol; 2008 Nov; 50(7):647-64. PubMed ID: 18726989
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visual-auditory differences in duration discrimination depend on modality-specific, sensory-automatic temporal processing: Converging evidence for the validity of the Sensory-Automatic Timing Hypothesis.
    Rammsayer T; Pichelmann S
    Q J Exp Psychol (Hove); 2018 Nov; 71(11):2364-2377. PubMed ID: 30362412
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dissecting the Roles of Supervised and Unsupervised Learning in Perceptual Discrimination Judgments.
    Loewenstein Y; Raviv O; Ahissar M
    J Neurosci; 2021 Jan; 41(4):757-765. PubMed ID: 33380471
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Auditory perceptual learning and changes in the conceptualization of auditory cortex.
    Irvine DRF
    Hear Res; 2018 Sep; 366():3-16. PubMed ID: 29551308
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neural dynamics based timing in the subsecond to seconds range.
    Buonomano DV
    Adv Exp Med Biol; 2014; 829():101-17. PubMed ID: 25358707
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-Produced Time Intervals Are Perceived as More Variable and/or Shorter Depending on Temporal Context in Subsecond and Suprasecond Ranges.
    Mitani K; Kashino M
    Front Integr Neurosci; 2016; 10():19. PubMed ID: 27313515
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A neurocomputational model for optimal temporal processing.
    Hass J; Blaschke S; Rammsayer T; Herrmann JM
    J Comput Neurosci; 2008 Dec; 25(3):449-64. PubMed ID: 18379866
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Somatosensory Temporal Discrimination Threshold in Patients with Cognitive Disorders.
    D'Antonio F; De Bartolo MI; Ferrazzano G; Trebbastoni A; Amicarelli S; Campanelli A; de Lena C; Berardelli A; Conte A
    J Alzheimers Dis; 2019; 70(2):425-432. PubMed ID: 31177234
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tactile angle discriminability improvement: roles of training time intervals and different types of training tasks.
    Wang W; Yang J; Yu Y; Wu Q; Yu J; Takahashi S; Ejima Y; Wu J
    J Neurophysiol; 2019 Nov; 122(5):1918-1927. PubMed ID: 31461363
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.