These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 19487190)

  • 1. Relative time sharing: new findings and an extension of the resource allocation model of temporal processing.
    Buhusi CV; Meck WH
    Philos Trans R Soc Lond B Biol Sci; 2009 Jul; 364(1525):1875-85. PubMed ID: 19487190
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interval timing with gaps and distracters: evaluation of the ambiguity, switch, and time-sharing hypotheses.
    Buhusi CV; Meck WH
    J Exp Psychol Anim Behav Process; 2006 Jul; 32(3):329-38. PubMed ID: 16834500
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neural underpinnings of temporal processing: a review of focal lesion, pharmacological, and functional imaging research.
    Harrington DL; Haaland KY
    Rev Neurosci; 1999; 10(2):91-116. PubMed ID: 10658954
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oscillatory multiplexing of neural population codes for interval timing and working memory.
    Gu BM; van Rijn H; Meck WH
    Neurosci Biobehav Rev; 2015 Jan; 48():160-85. PubMed ID: 25454354
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Time sharing in rats: A peak-interval procedure with gaps and distracters.
    Buhusi CV; Meck WH
    Behav Processes; 2006 Feb; 71(2-3):107-15. PubMed ID: 16413701
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Time perception and temporal order memory.
    Brown SW; Smith-Petersen GA
    Acta Psychol (Amst); 2014 May; 148():173-80. PubMed ID: 24594383
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Time-sharing in pigeons: Independent effects of gap duration, position and discriminability from the timed signal.
    Buhusi CV; Paskalis JP; Cerutti DT
    Behav Processes; 2006 Feb; 71(2-3):116-25. PubMed ID: 16414210
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prospective and retrospective duration judgments: an executive-control perspective.
    Zakay D; Block RA
    Acta Neurobiol Exp (Wars); 2004; 64(3):319-28. PubMed ID: 15283475
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phase resetting and its implications for interval timing with intruders.
    Oprisan SA; Dix S; Buhusi CV
    Behav Processes; 2014 Jan; 101():146-53. PubMed ID: 24113026
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cortical networks underlying mechanisms of time perception.
    Harrington DL; Haaland KY; Knight RT
    J Neurosci; 1998 Feb; 18(3):1085-95. PubMed ID: 9437028
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Time-sharing in rats: effect of distracter intensity and discriminability.
    Buhusi CV
    J Exp Psychol Anim Behav Process; 2012 Jan; 38(1):30-9. PubMed ID: 22122061
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time perception, attention, and memory: a selective review.
    Block RA; Gruber RP
    Acta Psychol (Amst); 2014 Jun; 149():129-33. PubMed ID: 24365036
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neural correlates of audiovisual temporal processing--comparison of temporal order and simultaneity judgments.
    Binder M
    Neuroscience; 2015 Aug; 300():432-47. PubMed ID: 25982561
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interval timing with gaps: gap ambiguity as an alternative to temporal decay.
    Zentall TR; Kaiser DH
    J Exp Psychol Anim Behav Process; 2005 Oct; 31(4):484-6. PubMed ID: 16248734
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Age-related changes in time production and reproduction tasks: Involvement of attention and working memory processes.
    Mioni G; Capizzi M; Stablum F
    Neuropsychol Dev Cogn B Aging Neuropsychol Cogn; 2020 May; 27(3):412-429. PubMed ID: 31184267
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Elaborative rehearsal of nontemporal information interferes with temporal processing of durations in the range of seconds but not milliseconds.
    Rammsayer T; Ulrich R
    Acta Psychol (Amst); 2011 May; 137(1):127-33. PubMed ID: 21474111
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dissociation of the role of the prelimbic cortex in interval timing and resource allocation: beneficial effect of norepinephrine and dopamine reuptake inhibitor nomifensine on anxiety-inducing distraction.
    Matthews AR; He OH; Buhusi M; Buhusi CV
    Front Integr Neurosci; 2012; 6():111. PubMed ID: 23227004
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Attentional resources in timing: interference effects in concurrent temporal and nontemporal working memory tasks.
    Brown SW
    Percept Psychophys; 1997 Oct; 59(7):1118-40. PubMed ID: 9360484
    [TBL] [Abstract][Full Text] [Related]  

  • 19. No evidence for qualitative differences in the processing of short and long temporal intervals.
    Rammsayer T; Ulrich R
    Acta Psychol (Amst); 2005 Oct; 120(2):141-71. PubMed ID: 15907778
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Goal-dependent modulation of declarative memory: neural correlates of temporal recency decisions and novelty detection.
    Dudukovic NM; Wagner AD
    Neuropsychologia; 2007 Jun; 45(11):2608-20. PubMed ID: 17499318
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.