BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 19487314)

  • 1. Diesel consumption in waste collection and transport and its environmental significance.
    Larsen AW; Vrgoc M; Christensen TH; Lieberknecht P
    Waste Manag Res; 2009 Oct; 27(7):652-9. PubMed ID: 19487314
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The assessment of air emissions increase due to the collection of municipal solid waste with old collection vehicles: A case study of Ludbreg (Croatia).
    Radetić L; Vujević D; Premur V; Melnjak I; Anić Vučinić A
    Waste Manag Res; 2016 Oct; 34(10):1047-1053. PubMed ID: 27443293
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantifying the transport impacts of domestic waste collection strategies.
    McLeod F; Cherrett T
    Waste Manag; 2008 Nov; 28(11):2271-8. PubMed ID: 18083362
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of on-road emissions of four Euro V diesel and CNG waste collection trucks for supporting air-quality improvement initiatives in the city of Milan.
    Fontaras G; Martini G; Manfredi U; Marotta A; Krasenbrink A; Maffioletti F; Terenghi R; Colombo M
    Sci Total Environ; 2012 Jun; 426():65-72. PubMed ID: 22503608
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An investigation on the fuel savings potential of hybrid hydraulic refuse collection vehicles.
    Bender FA; Bosse T; Sawodny O
    Waste Manag; 2014 Sep; 34(9):1577-83. PubMed ID: 24953314
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Operation costs and pollutant emissions reduction by definition of new collection scheduling and optimization of MSW collection routes using GIS. The case study of Barreiro, Portugal.
    Zsigraiova Z; Semiao V; Beijoco F
    Waste Manag; 2013 Apr; 33(4):793-806. PubMed ID: 23266322
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Emissions from U.S. waste collection vehicles.
    Maimoun MA; Reinhart DR; Gammoh FT; McCauley Bush P
    Waste Manag; 2013 May; 33(5):1079-89. PubMed ID: 23434127
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of database of real-world diesel vehicle emission factors for China.
    Shen X; Yao Z; Zhang Q; Wagner DV; Huo H; Zhang Y; Zheng B; He K
    J Environ Sci (China); 2015 May; 31():209-20. PubMed ID: 25968276
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gaseous emissions from a heavy-duty engine equipped with SCR aftertreatment system and fuelled with diesel and biodiesel: assessment of pollutant dispersion and health risk.
    Tadano YS; Borillo GC; Godoi AF; Cichon A; Silva TO; Valebona FB; Errera MR; Penteado Neto RA; Rempel D; Martin L; Yamamoto CI; Godoi RH
    Sci Total Environ; 2014 Dec; 500-501():64-71. PubMed ID: 25217745
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of carcinogenic hazard of diesel engine exhaust needs to consider revolutionary changes in diesel technology.
    McClellan RO; Hesterberg TW; Wall JC
    Regul Toxicol Pharmacol; 2012 Jul; 63(2):225-58. PubMed ID: 22561182
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The London low emission zone baseline study.
    Kelly F; Armstrong B; Atkinson R; Anderson HR; Barratt B; Beevers S; Cook D; Green D; Derwent D; Mudway I; Wilkinson P;
    Res Rep Health Eff Inst; 2011 Nov; (163):3-79. PubMed ID: 22315924
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development and application of an aerosol screening model for size-resolved urban aerosols.
    Stanier CO; Lee SR;
    Res Rep Health Eff Inst; 2014 Jun; (179):3-79. PubMed ID: 25145039
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of retrofitting emission control systems on in-use heavy diesel vehicles.
    Millstein DE; Harley RA
    Environ Sci Technol; 2010 Jul; 44(13):5042-8. PubMed ID: 20521811
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Life cycle assessment of hydrogenated biodiesel production from waste cooking oil using the catalytic cracking and hydrogenation method.
    Yano J; Aoki T; Nakamura K; Yamada K; Sakai S
    Waste Manag; 2015 Apr; 38():409-23. PubMed ID: 25670164
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contribution of individual waste fractions to the environmental impacts from landfilling of municipal solid waste.
    Manfredi S; Tonini D; Christensen TH
    Waste Manag; 2010 Mar; 30(3):433-40. PubMed ID: 19854039
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantifying capital goods for collection and transport of waste.
    Brogaard LK; Christensen TH
    Waste Manag Res; 2012 Dec; 30(12):1243-50. PubMed ID: 23038046
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Airborne carbonyls from motor vehicle emissions in two highway tunnels.
    Grosjean D; Grosjean E
    Res Rep Health Eff Inst; 2002 Jan; (107):57-78; discussion 79-92. PubMed ID: 11954678
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biological activity of particle exhaust emissions from light-duty diesel engines.
    Carraro E; Locatelli AL; Ferrero C; Fea E; Gilli G
    J Environ Pathol Toxicol Oncol; 1997; 16(2-3):101-9. PubMed ID: 9275990
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of the US decision support tool for materials and waste management.
    Thorneloe SA; Weitz K; Jambeck J
    Waste Manag; 2007; 27(8):1006-20. PubMed ID: 17433663
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trends of greenhouse gas emissions from the road transport sector in India.
    Singh A; Gangopadhyay S; Nanda PK; Bhattacharya S; Sharma C; Bhan C
    Sci Total Environ; 2008 Feb; 390(1):124-31. PubMed ID: 17977579
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.