BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 19487808)

  • 1. The effects of the focus ion beam milling process on the optical properties of semiconductor nanostructures.
    Bellini E; Taurino A; Catalano M; Lomascolo M; Passaseo A; Vasanelli L
    Nanotechnology; 2009 Jun; 20(25):255306. PubMed ID: 19487808
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Focused ion beam fabrication of spintronic nanostructures: an optimization of the milling process.
    Urbánek M; Uhlír V; Bábor P; Kolíbalová E; Hrncír T; Spousta J; Sikola T
    Nanotechnology; 2010 Apr; 21(14):145304. PubMed ID: 20215654
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational studies of semiconductor quantum dots.
    Lehtonen O; Sundholm D; Vänskä T
    Phys Chem Chem Phys; 2008 Aug; 10(31):4535-50. PubMed ID: 18665302
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stacked GaAs quantum dots fabricated by refilling of self-organized nanoholes: optical properties and post-growth annealing.
    Polojärvi V; Schramm A; Guina M; Stemmann A; Heyn C
    Nanotechnology; 2011 Mar; 22(10):105603. PubMed ID: 21289401
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low density MOVPE grown InGaAs QDs exhibiting ultra-narrow single exciton linewidths.
    Richter D; Hafenbrak R; Jöns KD; Schulz WM; Eichfelder M; Heldmaier M; Rossbach R; Jetter M; Michler P
    Nanotechnology; 2010 Mar; 21(12):125606. PubMed ID: 20203350
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface damage induced by FIB milling and imaging of biological samples is controllable.
    Drobne D; Milani M; Leser V; Tatti F
    Microsc Res Tech; 2007 Oct; 70(10):895-903. PubMed ID: 17661360
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tomography of insulating biological and geological materials using focused ion beam (FIB) sectioning and low-kV BSE imaging.
    De Winter DA; Schneijdenberg CT; Lebbink MN; Lich B; Verkleij AJ; Drury MR; Humbel BM
    J Microsc; 2009 Mar; 233(3):372-83. PubMed ID: 19250458
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Creation of damage-free ferroelectric nanostructures via focused ion beam milling.
    Hambe M; Wicks S; Gregg JM; Nagarajan V
    Nanotechnology; 2008 Apr; 19(17):175302. PubMed ID: 21825666
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monolithic ZnTe-based pillar microcavities containing CdTe quantum dots.
    Kruse C; Pacuski W; Jakubczyk T; Kobak J; Gaj JA; Frank K; Schowalter M; Rosenauer A; Florian M; Jahnke F; Hommel D
    Nanotechnology; 2011 Jul; 22(28):285204. PubMed ID: 21654032
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conventional and back-side focused ion beam milling for off-axis electron holography of electrostatic potentials in transistors.
    Dunin-Borkowski RE; Newcomb SB; Kasama T; McCartney MR; Weyland M; Midgley PA
    Ultramicroscopy; 2005 Apr; 103(1):67-81. PubMed ID: 15777601
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reduction of electrical damage in specimens prepared using focused ion beam milling for dopant profiling using off-axis electron holography.
    Cooper D; Truche R; Rouviere JL
    Ultramicroscopy; 2008 Apr; 108(5):488-93. PubMed ID: 17888576
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dry processing of high resolution and high aspect ratio structures in GaAs-Al(x)Ga(1-x) As for integrated optics.
    Somekh S; Casey HC
    Appl Opt; 1977 Jan; 16(1):126-36. PubMed ID: 20168440
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering of 3D self-directed quantum dot ordering in multilayer InGaAs/GaAs nanostructures by means of flux gas composition.
    Lytvyn PM; Mazur YI; Marega E; Dorogan VG; Kladko VP; Slobodian MV; Strelchuk VV; Hussein ML; Ware ME; Salamo GJ
    Nanotechnology; 2008 Dec; 19(50):505605. PubMed ID: 19942777
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hybrid FIB milling strategy for the fabrication of plasmonic nanostructures on semiconductor substrates.
    Einsle JF; Bouillard JS; Dickson W; Zayats AV
    Nanoscale Res Lett; 2011 Oct; 6(1):572. PubMed ID: 22040004
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coupled effects of ion beam chemistry and morphology on directed self-assembly of epitaxial semiconductor nanostructures.
    Graham JF; Kell CD; Floro JA; Hull R
    Nanotechnology; 2011 Feb; 22(7):075301. PubMed ID: 21233546
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Damage in III-V compounds during focused ion beam milling.
    Rubanov S; Munroe PR
    Microsc Microanal; 2005 Oct; 11(5):446-55. PubMed ID: 17481325
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Off-axis electron holography of electrostatic potentials in unbiased and reverse biased focused ion beam milled semiconductor devices.
    Twitchett AC; Dunin-Borkowski RE; Hallifax RJ; Broom RF; Midgley PA
    J Microsc; 2004 Jun; 214(Pt 3):287-96. PubMed ID: 15157196
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of imperfections in silica and chalcogenide glass microspheres using focussed ion beam milling and imaging.
    Kane DM; Chater RJ; McPhail DS
    J Microsc; 2012 Aug; 247(2):186-95. PubMed ID: 22670836
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The application of FIB milling for specimen preparation from crystalline germanium.
    Rubanov S; Munroe PR
    Micron; 2004; 35(7):549-56. PubMed ID: 15219901
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Critical issues in the focused ion beam patterning of nanometric hole matrixes on GaAs based semiconducting devices.
    Catalano M; Taurino A; Lomascolo M; Schertel A; Orchowski A
    Nanotechnology; 2006 Mar; 17(6):1758-62. PubMed ID: 26558590
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.