These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 19488147)

  • 1. Design of all-glass multilayer phase gratings for cylindrical microlenses.
    Hudelist F; Waddie AJ; Taghizadeh MR
    Opt Lett; 2009 Jun; 34(11):1681-3. PubMed ID: 19488147
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and fabrication of nano-structured gradient index microlenses.
    Hudelist F; Buczynski R; Waddie AJ; Taghizadeh MR
    Opt Express; 2009 Mar; 17(5):3255-63. PubMed ID: 19259161
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chromatic control in coextruded layered polymer microlenses.
    Crescimanno M; Oder TN; Andrews JH; Zhou C; Petrus JB; Merlo C; Bagheri C; Hetzel C; Tancabel J; Singer KD; Baer E
    Opt Express; 2014 Dec; 22(24):29668-78. PubMed ID: 25606898
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diffractive optics development using a modified stack-and-draw technique.
    Pniewski J; Kasztelanic R; Nowosielski JM; Filipkowski A; Piechal B; Waddie AJ; Pysz D; Kujawa I; Stepien R; Taghizadeh MR; Buczynski R
    Appl Opt; 2016 Jun; 55(18):4939-45. PubMed ID: 27409122
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Refractive and diffractive properties of planar micro-optical elements.
    Rossi M; Kunz RE; Herzig HP
    Appl Opt; 1995 Sep; 34(26):5996-6007. PubMed ID: 21060437
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Blazed binary subwavelength gratings with efficiencies larger than those of conventional échelette gratings.
    Lalanne P; Astilean S; Chavel P; Cambril E; Launois H
    Opt Lett; 1998 Jul; 23(14):1081-3. PubMed ID: 18087434
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Achromatic nanostructured gradient index microlenses.
    Buczynski R; Filipkowski A; Piechal B; Nguyen HT; Pysz D; Stepien R; Waddie A; Taghizadeh MR; Klimczak M; Kasztelanic R
    Opt Express; 2019 Apr; 27(7):9588-9600. PubMed ID: 31045108
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coherent stitching of light in multilayered diffractive optical elements.
    Ng ML; Chanda D; Herman PR
    Opt Express; 2012 Oct; 20(21):23960-70. PubMed ID: 23188362
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Grating theory: new equations in Fourier space leading to fast converging results for TM polarization.
    Popov E; Nevière M
    J Opt Soc Am A Opt Image Sci Vis; 2000 Oct; 17(10):1773-84. PubMed ID: 11028525
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of spherical microlenses by a combination of isotropic wet etching of silicon and molding techniques.
    Albero J; Nieradko L; Gorecki C; Ottevaere H; Gomez V; Thienpont H; Pietarinen J; Päivänranta B; Passilly N
    Opt Express; 2009 Apr; 17(8):6283-92. PubMed ID: 19365454
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrating Free-Form Nanostructured GRIN Microlenses with Single-Mode Fibers for Optofluidic Systems.
    Kasztelanic R; Filipkowski A; Anuszkiewicz A; Stafiej P; Stepniewski G; Pysz D; Krzyzak K; Stepien R; Klimczak M; Buczynski R
    Sci Rep; 2018 Mar; 8(1):5072. PubMed ID: 29568035
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of high quality and low cost microlenses on a glass substrate by direct printing technique.
    Zang Z; Tang X; Liu X; Lei X; Chen W
    Appl Opt; 2014 Nov; 53(33):7868-71. PubMed ID: 25607860
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Method of eigenvectors for numerical studies of multilayer gratings.
    Erofeev VI; Kovalenko NV
    J Xray Sci Technol; 1997 Jan; 7(1):71-85. PubMed ID: 21307540
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diffraction-limited blazed reflection diffractive microlenses for oblique incidence fabricated by electron-beam lithography.
    Shiono T; Ogawa H
    Appl Opt; 1991 Sep; 30(25):3643-9. PubMed ID: 20706439
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and fabrication of diffractive optical elements by use of gray-scale photolithography.
    Sohn JS; Lee MB; Kim WC; Cho EH; Kim TW; Yoon CY; Park NC; Park YP
    Appl Opt; 2005 Feb; 44(4):506-11. PubMed ID: 15726946
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cost-effective fabrication of microlenses on hybrid sol-gel glass with a high-energy beam-sensitive gray-scale mask.
    Yuan XC; Yu W; Ngo N; Cheong W
    Opt Express; 2002 Apr; 10(7):303-8. PubMed ID: 19436361
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diffractive lens fabricated with mostly zeroth-order gratings.
    Chen FT; Craighead HG
    Opt Lett; 1996 Feb; 21(3):177-9. PubMed ID: 19865344
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design method for small-f-number microlenses based on a finite thickness model in combination with the Yang-Gu phase-retrieval algorithm.
    Rydberg C; Gu BY; Yang GZ
    J Opt Soc Am A Opt Image Sci Vis; 2007 Feb; 24(2):517-21. PubMed ID: 17206268
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Silicone microlenses and interference gratings.
    Calixto S
    Appl Opt; 2002 Jun; 41(16):3355-61. PubMed ID: 12064425
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wavelet element method for lamellar gratings.
    Liu Z; Wu JH; Shen L
    J Opt Soc Am A Opt Image Sci Vis; 2013 May; 30(5):1021-9. PubMed ID: 23695336
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.