These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 19488366)

  • 1. Ocular aberrations as a function of wavelength in the near infrared measured with a femtosecond laser.
    Fernández E; Unterhuber A; Prieto P; Hermann B; Drexler W; Artal P
    Opt Express; 2005 Jan; 13(2):400-9. PubMed ID: 19488366
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aberrations of the human eye in visible and near infrared illumination.
    Llorente L; Diaz-Santana L; Lara-Saucedo D; Marcos S
    Optom Vis Sci; 2003 Jan; 80(1):26-35. PubMed ID: 12553541
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chromatic aberration correction of the human eye for retinal imaging in the near infrared.
    Fernández EJ; Unterhuber A; Povazay B; Hermann B; Artal P; Drexler W
    Opt Express; 2006 Jun; 14(13):6213-25. PubMed ID: 19516794
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A wavelength tunable wavefront sensor for the human eye.
    Manzanera S; Canovas C; Prieto PM; Artal P
    Opt Express; 2008 May; 16(11):7748-55. PubMed ID: 18545485
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical aberrations in the mouse eye.
    de la Cera EG; Rodríguez G; Llorente L; Schaeffel F; Marcos S
    Vision Res; 2006 Aug; 46(16):2546-53. PubMed ID: 16516259
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ocular aberrations up to the infrared range: from 632.8 to 1070 nm.
    Fernández EJ; Artal P
    Opt Express; 2008 Dec; 16(26):21199-208. PubMed ID: 19104549
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monochromatic aberrations provide an odd-error cue to focus direction.
    Wilson BJ; Decker KE; Roorda A
    J Opt Soc Am A Opt Image Sci Vis; 2002 May; 19(5):833-9. PubMed ID: 11999959
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Closed-loop adaptive optics in the human eye.
    Fernández EJ; Iglesias I; Artal P
    Opt Lett; 2001 May; 26(10):746-8. PubMed ID: 18040440
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contrast adaptation appears independent of the longitudinal chromatic aberration of the human eye.
    Kraft C; Leube A; Ohlendorf A; Wahl S
    J Opt Soc Am A Opt Image Sci Vis; 2019 Apr; 36(4):B77-B84. PubMed ID: 31044963
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The wavelength composition and temporal modulation of ambient lighting strongly affect refractive development in young tree shrews.
    Gawne TJ; Siegwart JT; Ward AH; Norton TT
    Exp Eye Res; 2017 Feb; 155():75-84. PubMed ID: 27979713
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Supercontinuum Generation in Tapered Microstructure Fibers with Different Taper Length by Using Femtosecond Laser].
    Liu ZH; Wang W; Yang JJ; Han Y; Zhou GY; Qi YF; Hou LT
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Jul; 36(7):2011-6. PubMed ID: 30035516
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of ocular chromatic aberration and pupil size on transverse resolution in ophthalmic adaptive optics optical coherence tomography.
    Fernández E; Drexler W
    Opt Express; 2005 Oct; 13(20):8184-97. PubMed ID: 19498848
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Laser Ray Tracing versus Hartmann-Shack sensor for measuring optical aberrations in the human eye.
    Moreno-Barriuso E; Navarro R
    J Opt Soc Am A Opt Image Sci Vis; 2000 Jun; 17(6):974-85. PubMed ID: 10850467
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of a global algorithm for wavefront reconstruction for Shack-Hartmann wave-front sensors and thick fundus reflectors.
    Liu T; Thibos L; Marin G; Hernandez M
    Ophthalmic Physiol Opt; 2014 Jan; 34(1):63-72. PubMed ID: 24325435
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Binocular open-view instrument to measure aberrations and pupillary dynamics.
    Chirre E; Prieto PM; Artal P
    Opt Lett; 2014 Aug; 39(16):4773-5. PubMed ID: 25121871
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-wavelength imaging with the adaptive optics scanning laser Ophthalmoscope.
    Grieve K; Tiruveedhula P; Zhang Y; Roorda A
    Opt Express; 2006 Dec; 14(25):12230-42. PubMed ID: 19529652
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Statistical description of wave-front aberration in the human eye.
    Cagigal MP; Canales VF; Castejón-Mochón JF; Prieto PM; López-Gil N; Artal P
    Opt Lett; 2002 Jan; 27(1):37-9. PubMed ID: 18007708
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of the retinal image quality with a Hartmann-Shack wavefront sensor and a double-pass instrument.
    Díaz-Doutón F; Benito A; Pujol J; Arjona M; Güell JL; Artal P
    Invest Ophthalmol Vis Sci; 2006 Apr; 47(4):1710-6. PubMed ID: 16565413
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Quantitative assessment of quality of vision].
    Oshika T
    Nippon Ganka Gakkai Zasshi; 2004 Dec; 108(12):770-807; discussion 808. PubMed ID: 15656087
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coating-induced wave-front aberrations: on-axis astigmatism and chromatic aberration in all-reflecting systems.
    Reiley DJ; Chipman RA
    Appl Opt; 1994 Apr; 33(10):2002-12. PubMed ID: 20885536
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.