BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 19488367)

  • 1. Frequency estimation precision in Doppler optical coherence tomography using the Cramer-Rao lower bound.
    Yazdanfar S; Yang C; Sarunic M; Izatt J
    Opt Express; 2005 Jan; 13(2):410-6. PubMed ID: 19488367
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Maximum likelihood Doppler frequency estimation under decorrelation noise for quantifying flow in optical coherence tomography.
    Chan AC; Srinivasan VJ; Lam EY
    IEEE Trans Med Imaging; 2014 Jun; 33(6):1313-23. PubMed ID: 24760902
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Precision of attenuation coefficient measurements by optical coherence tomography.
    Neubrand LB; van Leeuwen TG; Faber DJ
    J Biomed Opt; 2022 Aug; 27(8):. PubMed ID: 35945668
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-referenced Doppler optical coherence tomography.
    Yazdanfar S; Izatt JA
    Opt Lett; 2002 Dec; 27(23):2085-7. PubMed ID: 18033449
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of Kasai autocorrelation and maximum likelihood estimators for Doppler optical coherence tomography.
    Chan AC; Lam EY; Srinivasan VJ
    IEEE Trans Med Imaging; 2013 Jun; 32(6):1033-42. PubMed ID: 23446044
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical range precision obtained by maximum likelihood estimation in laser radar compared with the Cramer-Rao bound.
    Gu Z; Lai J; Wang C; Yan W; Ji Y; Li Z
    Appl Opt; 2018 Dec; 57(34):9951-9957. PubMed ID: 30645251
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accuracy and precision of depth-resolved estimation of attenuation coefficients in optical coherence tomography.
    Neubrand LB; van Leeuwen TG; Faber DJ
    J Biomed Opt; 2023 Jun; 28(6):066001. PubMed ID: 37325192
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cramer-rao bounds and coherence performance analysis for next generation radar with pulse trains.
    Tang X; Tang J; He Q; Wan S; Tang B; Sun P; Zhang N
    Sensors (Basel); 2013 Apr; 13(4):5347-67. PubMed ID: 23612588
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fundamental uncertainty limit of optical flow velocimetry according to Heisenberg's uncertainty principle.
    Fischer A
    Appl Opt; 2016 Nov; 55(31):8787-8795. PubMed ID: 27828276
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantum metrology in open systems: dissipative Cramér-Rao bound.
    Alipour S; Mehboudi M; Rezakhani AT
    Phys Rev Lett; 2014 Mar; 112(12):120405. PubMed ID: 24724633
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Limiting Uncertainty Relations in Laser-Based Measurements of Position and Velocity Due to Quantum Shot Noise.
    Fischer A
    Entropy (Basel); 2019 Mar; 21(3):. PubMed ID: 33266979
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Cramér-Rao Bounds and Sensor Selection for Nonlinear Systems with Uncertain Observations.
    Wang Z; Shen X; Wang P; Zhu Y
    Sensors (Basel); 2018 Apr; 18(4):. PubMed ID: 29621158
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bounds of parameter estimation for interference signals.
    Li C; Zhu Y
    Appl Opt; 2017 Aug; 56(24):6867-6872. PubMed ID: 29048026
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Swept-source based, single-shot, multi-detectable velocity range Doppler optical coherence tomography.
    Meemon P; Rolland JP
    Biomed Opt Express; 2010 Sep; 1(3):955-966. PubMed ID: 21258521
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantum-limited mirror-motion estimation.
    Iwasawa K; Makino K; Yonezawa H; Tsang M; Davidovic A; Huntington E; Furusawa A
    Phys Rev Lett; 2013 Oct; 111(16):163602. PubMed ID: 24182266
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bound on range precision for shot-noise limited ladar systems.
    Johnson S; Cain S
    Appl Opt; 2008 Oct; 47(28):5147-54. PubMed ID: 18830304
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Feasibility of interstitial Doppler optical coherence tomography for in vivo detection of microvascular changes during photodynamic therapy.
    Li H; Standish BA; Mariampillai A; Munce NR; Mao Y; Chiu S; Marcon NE; Wilson BC; Vitkin A; Yang VX
    Lasers Surg Med; 2006 Sep; 38(8):754-61. PubMed ID: 16927368
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transmission estimation at the quantum Cramér-Rao bound with macroscopic quantum light.
    Woodworth TS; Hermann-Avigliano C; Chan KWC; Marino AM
    EPJ Quantum Technol; 2022; 9(1):38. PubMed ID: 36573927
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cramer-Rao lower bound for the estimation of the degree of polarization in active coherent imagery at low photon levels.
    Réfrégier P; Roche M; Goudail F
    Opt Lett; 2006 Dec; 31(24):3565-7. PubMed ID: 17130904
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Compact and high-precision wavemeters using the Talbot effect and signal processing.
    Han N; West GN; Atabaki AH; Burghoff D; Ram RJ
    Opt Lett; 2019 Sep; 44(17):4187-4190. PubMed ID: 31465359
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.