These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 19488393)

  • 1. Optimization of dual-core and microstructure fiber geometries for dispersion compensation and large mode area.
    Huttunen A; Törmä P
    Opt Express; 2005 Jan; 13(2):627-35. PubMed ID: 19488393
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Large-effective-area dispersion-compensating fiber design based on dual-core microstructure.
    Prabhakar G; Peer A; Rastogi V; Kumar A
    Appl Opt; 2013 Jul; 52(19):4505-9. PubMed ID: 23842244
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photonic crystal fiber for dispersion compensation.
    Zhao X; Zhou G; Li S; Liu Z; Wei D; Hou Z; Hou L
    Appl Opt; 2008 Oct; 47(28):5190-6. PubMed ID: 18830310
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis and optimization of a dual-core dispersion compensation fiber based on a 12-fold photonic quasicrystal structure.
    Matloub S; Hosseini SM; Rostami A
    Appl Opt; 2014 Dec; 53(35):8366-73. PubMed ID: 25608082
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design optimization of a dual-core dispersion-compensating fiber with a high figure of merit and a large effective area for dense wavelength-division multiplexed transmission through standard G.655 fibers.
    Pande K; Pal BP
    Appl Opt; 2003 Jul; 42(19):3785-91. PubMed ID: 12868816
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chromatic dispersion profile optimization of dual-concentric-core photonic crystal fibers for broadband dispersion compensation.
    Fujisawa T; Saitoh K; Wada K; Koshiba M
    Opt Express; 2006 Jan; 14(2):893-900. PubMed ID: 19503409
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fiber designs with significantly reduced nonlinearity for very long distance transmission.
    Hattori HT; Safaai-Jazi A
    Appl Opt; 1998 May; 37(15):3190-7. PubMed ID: 18273268
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical realization of holey fiber with flat chromatic dispersion and large mode area: an intriguing defected approach.
    Saitoh K; Florous NJ; Koshiba M
    Opt Lett; 2006 Jan; 31(1):26-8. PubMed ID: 16419866
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Slot-slot waveguide with negative large and flat dispersion covering C+L+U waveband for on-chip photonic networks.
    Hui Z; Yang M; Pan D; Zhang T; Gong J; Zhang M; Zeng X
    Appl Opt; 2019 Jul; 58(21):5728-5739. PubMed ID: 31503872
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly birefringent, highly negative dispersion compensating photonic crystal fiber.
    Bala A; Chowdhury KR; Mia MB; Faisal M
    Appl Opt; 2017 Sep; 56(25):7256-7261. PubMed ID: 29047988
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Residual dispersion compensation over the S + C + L + U wavelength bands using highly birefringent octagonal photonic crystal fiber.
    Habib MS; Ahmad R; Habib MS; Hasan MI
    Appl Opt; 2014 May; 53(14):3057-62. PubMed ID: 24922026
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design of a broadband highly dispersive pure silica photonic crystal fiber.
    Subbaraman H; Ling T; Jiang Y; Chen MY; Cao P; Chen RT
    Appl Opt; 2007 Jun; 46(16):3263-8. PubMed ID: 17514284
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Large-mode-area Nd-doped single-transversemode dual-wavelength microstructure fiber laser.
    Glas P; Fischer D; Moenster M; Steinmeyer G; Iliew R; Etrich C; Kreitel M; Nilsson LE; Köppler R
    Opt Express; 2005 Oct; 13(20):7884-92. PubMed ID: 19498817
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design of dispersion-compensating fibers based on a dual-concentric-core photonic crystal fiber.
    Gérôme F; Auguste JL; Blondy JM
    Opt Lett; 2004 Dec; 29(23):2725-7. PubMed ID: 15605485
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hole-assisted dual concentric core fiber with ultralarge negative dispersion coefficient of -13,200 ps/nm/km.
    Sakamoto T; Matsui T; Tsujikawa K; Tomita S
    Appl Opt; 2011 Jun; 50(18):2979-83. PubMed ID: 21691364
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of microstructured optical fibers for wideband dispersion compensation.
    Poli F; Cucinotta A; Fuochi M; Selleri S; Vincetti L
    J Opt Soc Am A Opt Image Sci Vis; 2003 Oct; 20(10):1958-62. PubMed ID: 14570109
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Widely flexible and finely adjustable nonlocal dispersion cancellation with wavelength tuning.
    Xiang X; Quan R; Liu Y; Shi B; Hong H; Jin Y; Liu T; Dong R; Zhang S
    Opt Express; 2022 Dec; 30(25):44487-44495. PubMed ID: 36522872
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient broadband intracore grating LP(01)-LP(02) mode converters for chromatic-dispersion compensation.
    Hong Ky N; Limberger HG; Salathé RP; Cochet F
    Opt Lett; 1998 Mar; 23(6):445-7. PubMed ID: 18084539
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design of broadband LP01↔LP02 mode converter based on special dual-core fiber for dispersion compensation.
    Lin G; Dong X
    Appl Opt; 2012 Jul; 51(19):4388-93. PubMed ID: 22772111
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tunable dual-core liquid-filled photonic crystal fibers for dispersion compensation.
    Yu CP; Liou JH; Huang SS; Chang HC
    Opt Express; 2008 Mar; 16(7):4443-51. PubMed ID: 18542541
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.