These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 19488555)

  • 41. Transient evoked otoacoustic emission latency and estimates of cochlear tuning in preterm neonates.
    Moleti A; Sisto R; Paglialonga A; Sibella F; Anteunis L; Parazzini M; Tognola G
    J Acoust Soc Am; 2008 Nov; 124(5):2984-94. PubMed ID: 19045786
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Study of otoacoustic emissions during the female hormonal cycle.
    Arruda PO; Silva IM
    Braz J Otorhinolaryngol; 2008; 74(1):106-11. PubMed ID: 18392510
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Reflectance Measures from Infant Ears With Normal Hearing and Transient Conductive Hearing Loss.
    Voss SE; Herrmann BS; Horton NJ; Amadei EA; Kujawa SG
    Ear Hear; 2016; 37(5):560-71. PubMed ID: 27050773
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Clinical testing of distortion-product otoacoustic emissions.
    Lonsbury-Martin BL; McCoy MJ; Whitehead ML; Martin GK
    Ear Hear; 1993 Feb; 14(1):11-22. PubMed ID: 8444333
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Oto-acoustic emissions and brainstem evoked response audiometry in patients of tinnitus with normal hearing.
    Dadoo S; Sharma R; Sharma V
    Int Tinnitus J; 2019 Jan; 23(1):17-25. PubMed ID: 31469523
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Otoacoustic emissions and effects of contralateral white noise stimulation on transient evoked otoacoustic emissions in diabetic children.
    Ugur AK; Kemaloglu YK; Ugur MB; Gunduz B; Saridogan C; Yesilkaya E; Bideci A; Cinaz P; Goksu N
    Int J Pediatr Otorhinolaryngol; 2009 Apr; 73(4):555-9. PubMed ID: 19150138
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Relationship Between Distortion Product - Otoacoustic Emissions (DPOAEs) and High-Frequency Acoustic Immittance Measures.
    Campos Ude P; Hatzopoulos S; Śliwa LK; Skarżyński PH; Jędrzejczak WW; Skarżyński H; Carvallo RM
    Med Sci Monit; 2016 Jun; 22():2028-34. PubMed ID: 27299792
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Otoacoustic emissions in young adults with a history of otitis media.
    Yilmaz S; Karasalihoglu AR; Tas A; Yagiz R; Tas M
    J Laryngol Otol; 2006 Feb; 120(2):103-7. PubMed ID: 16359151
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effects of atmospheric pressure variation on spontaneous, transiently evoked, and distortion product otoacoustic emissions in normal human ears.
    Hauser R; Probst R; Harris FP
    Hear Res; 1993 Sep; 69(1-2):133-45. PubMed ID: 8226333
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Rifle impulse noise affects middle-ear compliance in soldiers wearing protective earplugs.
    Job A; Hamery P; De Mezzo S; Fialaire JC; Roux A; Untereiner M; Cardinale F; Michel H; Klein C; Belcourt B
    Int J Audiol; 2016; 55(1):30-7. PubMed ID: 26328899
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A normative study of otoacoustic emissions, ear asymmetry, and gender effect in healthy schoolchildren in Slovakia.
    Pavlovcinová G; Jakubíková J; Trnovec T; Lancz K; Wimmerová S; Sovcíková E; Palkovicová L
    Int J Pediatr Otorhinolaryngol; 2010 Feb; 74(2):173-7. PubMed ID: 20018388
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Distortion-product otoacoustic emissions in schoolchildren: effects of ear asymmetry, handedness, and gender.
    Keogh T; Kei J; Driscoll C; Smyth V
    J Am Acad Audiol; 2001; 12(10):506-13. PubMed ID: 11791937
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The relationship between distortion product otoacoustic emissions and extended high-frequency audiometry in tinnitus patients. Part 1: normally hearing patients with unilateral tinnitus.
    Fabijańska A; Smurzyński J; Hatzopoulos S; Kochanek K; Bartnik G; Raj-Koziak D; Mazzoli M; Skarżyński PH; Jędrzejczak WW; Szkiełkowska A; Skarżyński H
    Med Sci Monit; 2012 Dec; 18(12):CR765-70. PubMed ID: 23197241
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Sources of variability in distortion product otoacoustic emissions.
    Garner CA; Neely ST; Gorga MP
    J Acoust Soc Am; 2008 Aug; 124(2):1054-67. PubMed ID: 18681596
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effects of ear canal static pressure on the dynamic behaviour of outer and middle ear in newborns.
    Aithal V; Kei J; Driscoll C; Murakoshi M; Wada H
    Int J Pediatr Otorhinolaryngol; 2016 Mar; 82():64-72. PubMed ID: 26857318
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Spontaneous otoacoustic emissions measured using an open ear-canal recording technique.
    Boul A; Lineton B
    Hear Res; 2010 Oct; 269(1-2):112-21. PubMed ID: 20600736
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Tone burst evoked otoacoustic emissions in different age-groups of schoolchildren.
    Jedrzejczak WW; Pilka E; Skarzynski PH; Olszewski L; Skarzynski H
    Int J Pediatr Otorhinolaryngol; 2015 Aug; 79(8):1310-5. PubMed ID: 26092548
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Technical report: distortion product otoacoustic emissions that are not outer hair cell emissions.
    Silman S; Emmer MB; Silverman CA
    J Am Acad Audiol; 2009 May; 20(5):306-10. PubMed ID: 19585960
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The audiological profile of adults with and without hypertension.
    Soares MA; Sanches SG; Matas CG; Samelli AG
    Clinics (Sao Paulo); 2016 Apr; 71(4):187-92. PubMed ID: 27166767
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Loss of peripheral right-ear advantage in age-related hearing loss.
    Tadros SF; Frisina ST; Mapes F; Kim S; Frisina DR; Frisina RD
    Audiol Neurootol; 2005; 10(1):44-52. PubMed ID: 15567914
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.