These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 19488669)

  • 21. Quantitative relationships between microdamage and cancellous bone strength and stiffness.
    Hernandez CJ; Lambers FM; Widjaja J; Chapa C; Rimnac CM
    Bone; 2014 Sep; 66():205-13. PubMed ID: 24928495
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Damage mechanisms and failure modes of cortical bone under components of physiological loading.
    George WT; Vashishth D
    J Orthop Res; 2005 Sep; 23(5):1047-53. PubMed ID: 16140189
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Deformation behaviour of bovine cancellous bone.
    Dendorfer S; Maier HJ; Hammer J
    Technol Health Care; 2006; 14(6):549-56. PubMed ID: 17148868
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Altered bioreactivity and limited osteoconductivity of calcium sulfate-based bone cements in the osteoporotic rat spine.
    Wang ML; Massie J; Allen RT; Lee YP; Kim CW
    Spine J; 2008; 8(2):340-50. PubMed ID: 17983844
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tissue-level failure accumulation in vertebral cancellous bone: a theoretical model.
    Slomka N; Diamant I; Gefen A
    Technol Health Care; 2008; 16(1):47-60. PubMed ID: 18334787
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Accumulation of in-vivo fatigue microdamage and its relation to biomechanical properties in ageing human cortical bone.
    Zioupos P
    J Microsc; 2001 Feb; 201(2):270-278. PubMed ID: 11207929
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Anisotropy of the fatigue behaviour of cancellous bone.
    Dendorfer S; Maier HJ; Taylor D; Hammer J
    J Biomech; 2008; 41(3):636-41. PubMed ID: 18005974
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An approach to quantifying bone overloading and hypertrophy with applications to multiple experimental studies.
    Chen JC; Beaupré GS; Carter DR
    Bone; 2010 Feb; 46(2):322-9. PubMed ID: 19800044
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Use of the rat forelimb compression model to create discrete levels of bone damage in vivo.
    Uthgenannt BA; Silva MJ
    J Biomech; 2007; 40(2):317-24. PubMed ID: 16519891
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A mechano-regulation model of fracture repair in vertebral bodies.
    Boccaccio A; Kelly DJ; Pappalettere C
    J Orthop Res; 2011 Mar; 29(3):433-43. PubMed ID: 20886646
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Detection of fatigue microdamage in whole rat femora using contrast-enhanced micro-computed tomography.
    Turnbull TL; Gargac JA; Niebur GL; Roeder RK
    J Biomech; 2011 Sep; 44(13):2395-400. PubMed ID: 21764062
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Locations of bone tissue at high risk of initial failure during compressive loading of the human vertebral body.
    Eswaran SK; Gupta A; Keaveny TM
    Bone; 2007 Oct; 41(4):733-9. PubMed ID: 17643362
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Trabecular shear stresses predict in vivo linear microcrack density but not diffuse damage in human vertebral cancellous bone.
    Yeni YN; Hou FJ; Ciarelli T; Vashishth D; Fyhrie DP
    Ann Biomed Eng; 2003 Jun; 31(6):726-32. PubMed ID: 12797623
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microfracture and changes in energy absorption to fracture of young vertebral cancellous bone following physiological fatigue loading.
    Lu WW; Luk KD; Cheung KC; Gui-Xing Q; Shen JX; Yuen L; Ouyang J; Leong JC
    Spine (Phila Pa 1976); 2004 Jun; 29(11):1196-201; discussion 1202. PubMed ID: 15167657
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bone formation after damaging in vivo fatigue loading results in recovery of whole-bone monotonic strength and increased fatigue life.
    Silva MJ; Touhey DC
    J Orthop Res; 2007 Feb; 25(2):252-61. PubMed ID: 17106875
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Vertebrae in compression: Mechanical behavior of arches and centra in the gray smooth-hound shark (Mustelus californicus).
    Porter ME; Long JH
    J Morphol; 2010 Mar; 271(3):366-75. PubMed ID: 19862836
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Development of residual strains in human vertebral trabecular bone after prolonged static and cyclic loading at low load levels.
    Yamamoto E; Paul Crawford R; Chan DD; Keaveny TM
    J Biomech; 2006; 39(10):1812-8. PubMed ID: 16038915
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mouse tail vertebrae adapt to cyclic mechanical loading by increasing bone formation rate and decreasing bone resorption rate as shown by time-lapsed in vivo imaging of dynamic bone morphometry.
    Lambers FM; Schulte FA; Kuhn G; Webster DJ; Müller R
    Bone; 2011 Dec; 49(6):1340-50. PubMed ID: 21964411
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Assessment of cancellous bone quality in severe osteoarthrosis: bone mineral density, mechanics, and microdamage.
    Fazzalari NL; Forwood MR; Smith K; Manthey BA; Herreen P
    Bone; 1998 Apr; 22(4):381-8. PubMed ID: 9556139
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modeling of dynamic fracture and damage in two-dimensional trabecular bone microstructures using the cohesive finite element method.
    Tomar V
    J Biomech Eng; 2008 Apr; 130(2):021021. PubMed ID: 18412508
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.