These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

317 related articles for article (PubMed ID: 19488703)

  • 1. Use of residual dipolar couplings in structural analysis of protein-ligand complexes by solution NMR spectroscopy.
    Jain NU
    Methods Mol Biol; 2009; 544():231-52. PubMed ID: 19488703
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Various strategies of using residual dipolar couplings in NMR-driven protein docking: application to Lys48-linked di-ubiquitin and validation against 15N-relaxation data.
    van Dijk AD; Fushman D; Bonvin AM
    Proteins; 2005 Aug; 60(3):367-81. PubMed ID: 15937902
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Residual dipolar coupling derived orientational constraints on ligand geometry in a 53 kDa protein-ligand complex.
    Bolon PJ; Al-Hashimi HM; Prestegard JH
    J Mol Biol; 1999 Oct; 293(1):107-15. PubMed ID: 10512719
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Residual dipolar couplings in NMR structure analysis.
    Lipsitz RS; Tjandra N
    Annu Rev Biophys Biomol Struct; 2004; 33():387-413. PubMed ID: 15139819
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantifying two-bond 1HN-13CO and one-bond 1H(alpha)-13C(alpha) dipolar couplings of invisible protein states by spin-state selective relaxation dispersion NMR spectroscopy.
    Hansen DF; Vallurupalli P; Kay LE
    J Am Chem Soc; 2008 Jul; 130(26):8397-405. PubMed ID: 18528998
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Variation of molecular alignment as a means of resolving orientational ambiguities in protein structures from dipolar couplings.
    Al-Hashimi HM; Valafar H; Terrell M; Zartler ER; Eidsness MK; Prestegard JH
    J Magn Reson; 2000 Apr; 143(2):402-6. PubMed ID: 10729267
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NMR and small-angle scattering-based structural analysis of protein complexes in solution.
    Madl T; Gabel F; Sattler M
    J Struct Biol; 2011 Mar; 173(3):472-82. PubMed ID: 21074620
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CABS-NMR--De novo tool for rapid global fold determination from chemical shifts, residual dipolar couplings and sparse methyl-methyl NOEs.
    Latek D; Kolinski A
    J Comput Chem; 2011 Feb; 32(3):536-44. PubMed ID: 20806263
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Docking of protein-protein complexes on the basis of highly ambiguous intermolecular distance restraints derived from 1H/15N chemical shift mapping and backbone 15N-1H residual dipolar couplings using conjoined rigid body/torsion angle dynamics.
    Clore GM; Schwieters CD
    J Am Chem Soc; 2003 Mar; 125(10):2902-12. PubMed ID: 12617657
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Residual dipolar couplings in protein structure determination.
    de Alba E; Tjandra N
    Methods Mol Biol; 2004; 278():89-106. PubMed ID: 15317993
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SOS-NMR: a saturation transfer NMR-based method for determining the structures of protein-ligand complexes.
    Hajduk PJ; Mack JC; Olejniczak ET; Park C; Dandliker PJ; Beutel BA
    J Am Chem Soc; 2004 Mar; 126(8):2390-8. PubMed ID: 14982445
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Refining the overall structure and subdomain orientation of ribosomal protein S4 delta41 with dipolar couplings measured by NMR in uniaxial liquid crystalline phases.
    Markus MA; Gerstner RB; Draper DE; Torchia DA
    J Mol Biol; 1999 Sep; 292(2):375-87. PubMed ID: 10493882
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular symmetry as an aid to geometry determination in ligand protein complexes.
    Al-Hashimi HM; Bolon PJ; Prestegard JH
    J Magn Reson; 2000 Jan; 142(1):153-8. PubMed ID: 10617446
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural characterization of a mannose-binding protein-trimannoside complex using residual dipolar couplings.
    Jain NU; Noble S; Prestegard JH
    J Mol Biol; 2003 Apr; 328(2):451-62. PubMed ID: 12691753
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NMR spectroscopic characterization of the membrane affinity of polyols.
    Fischer D; Geyer A
    Magn Reson Chem; 2005 Nov; 43(11):893-901. PubMed ID: 16142831
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Composite alignment media for the measurement of independent sets of NMR residual dipolar couplings.
    Ruan K; Tolman JR
    J Am Chem Soc; 2005 Nov; 127(43):15032-3. PubMed ID: 16248635
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NMR investigations of protein-carbohydrate interactions: studies on the relevance of Trp/Tyr variations in lectin binding sites as deduced from titration microcalorimetry and NMR studies on hevein domains. Determination of the NMR structure of the complex between pseudohevein and N,N',N"-triacetylchitotriose.
    Asensio JL; Siebert HC; von Der Lieth CW; Laynez J; Bruix M; Soedjanaamadja UM; Beintema JJ; Cañada FJ; Gabius HJ; Jiménez-Barbero J
    Proteins; 2000 Aug; 40(2):218-36. PubMed ID: 10842338
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular-orientation analysis based on alignment-induced TROSY chemical shift changes.
    Tate S; Shimahara H; Utsunomiya-Tate N
    J Magn Reson; 2004 Dec; 171(2):284-92. PubMed ID: 15546755
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NMR studies of protein-nucleic acid interactions.
    Varani G; Chen Y; Leeper TC
    Methods Mol Biol; 2004; 278():289-312. PubMed ID: 15318001
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NMR analysis of carbohydrate-protein interactions.
    Angulo J; Rademacher C; Biet T; Benie AJ; Blume A; Peters H; Palcic M; Parra F; Peters T
    Methods Enzymol; 2006; 416():12-30. PubMed ID: 17113857
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.