These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. The proteomic response of Saccharomyces cerevisiae in very high glucose conditions with amino acid supplementation. Pham TK; Wright PC J Proteome Res; 2008 Nov; 7(11):4766-74. PubMed ID: 18808174 [TBL] [Abstract][Full Text] [Related]
7. Monitoring stress-related genes during the process of biomass propagation of Saccharomyces cerevisiae strains used for wine making. Pérez-Torrado R; Bruno-Bárcena JM; Matallana E Appl Environ Microbiol; 2005 Nov; 71(11):6831-7. PubMed ID: 16269716 [TBL] [Abstract][Full Text] [Related]
8. Amiodarone induces stress responses and calcium flux mediated by the cell wall in Saccharomyces cerevisiae. Courchesne WE; Tunc M; Liao S Can J Microbiol; 2009 Mar; 55(3):288-303. PubMed ID: 19370072 [TBL] [Abstract][Full Text] [Related]
9. Temporal quantitative proteomics of Saccharomyces cerevisiae in response to a nonlethal concentration of furfural. Lin FM; Tan Y; Yuan YJ Proteomics; 2009 Dec; 9(24):5471-83. PubMed ID: 19834894 [TBL] [Abstract][Full Text] [Related]
10. Proteomic evolution of a wine yeast during the first hours of fermentation. Salvadó Z; Chiva R; Rodríguez-Vargas S; Rández-Gil F; Mas A; Guillamón JM FEMS Yeast Res; 2008 Nov; 8(7):1137-46. PubMed ID: 18503542 [TBL] [Abstract][Full Text] [Related]
11. Proteomic analysis reveals significant alternations of cardiac small heat shock protein expression in congestive heart failure. Dohke T; Wada A; Isono T; Fujii M; Yamamoto T; Tsutamoto T; Horie M J Card Fail; 2006 Feb; 12(1):77-84. PubMed ID: 16500585 [TBL] [Abstract][Full Text] [Related]
12. Heat shock causes oxidative stress and induces a variety of cell rescue proteins in Saccharomyces cerevisiae KNU5377. Kim IS; Moon HY; Yun HS; Jin I J Microbiol; 2006 Oct; 44(5):492-501. PubMed ID: 17082742 [TBL] [Abstract][Full Text] [Related]
14. A knockout strain of CPR1 induced during fermentation of Saccharomyces cerevisiae KNU5377 is susceptible to various types of stress. Kim IS; Yun HS; Park IS; Sohn HY; Iwahashi H; Jin IN J Biosci Bioeng; 2006 Oct; 102(4):288-96. PubMed ID: 17116574 [TBL] [Abstract][Full Text] [Related]
15. A proteomic approach in analyzing heat-responsive proteins in rice leaves. Lee DG; Ahsan N; Lee SH; Kang KY; Bahk JD; Lee IJ; Lee BH Proteomics; 2007 Sep; 7(18):3369-83. PubMed ID: 17722143 [TBL] [Abstract][Full Text] [Related]
16. Proteomic analysis of recombinant Saccharomyces cerevisiae upon iron deficiency induced via human H-ferritin production. Seo HY; Chang YJ; Chung YJ; Kim KS J Microbiol Biotechnol; 2008 Aug; 18(8):1368-76. PubMed ID: 18756096 [TBL] [Abstract][Full Text] [Related]
17. Tissue-specific defense and thermo-adaptive mechanisms of soybean seedlings under heat stress revealed by proteomic approach. Ahsan N; Donnart T; Nouri MZ; Komatsu S J Proteome Res; 2010 Aug; 9(8):4189-204. PubMed ID: 20540562 [TBL] [Abstract][Full Text] [Related]
18. Stress-tolerance of baker's-yeast (Saccharomyces cerevisiae) cells: stress-protective molecules and genes involved in stress tolerance. Shima J; Takagi H Biotechnol Appl Biochem; 2009 May; 53(Pt 3):155-64. PubMed ID: 19476439 [TBL] [Abstract][Full Text] [Related]
19. Tolerance to furfural-induced stress is associated with pentose phosphate pathway genes ZWF1, GND1, RPE1, and TKL1 in Saccharomyces cerevisiae. Gorsich SW; Dien BS; Nichols NN; Slininger PJ; Liu ZL; Skory CD Appl Microbiol Biotechnol; 2006 Jul; 71(3):339-49. PubMed ID: 16222531 [TBL] [Abstract][Full Text] [Related]
20. [Comparison of crude lysate pellets of isogenic strains of yeast with different prion composition: identification of a set of prion-associated proteins]. Nevzgliadova OV; Artemov AV; Mittenberg AG; Kostyleva EI; Mikhaĭlova EV; Solov'ev KV; Kuznetsova IM; Turoverov KK; Soĭdla TR Tsitologiia; 2010; 52(1):63-79. PubMed ID: 20302018 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]