These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 19489118)

  • 1. A picogram- and nanometre-scale photonic-crystal optomechanical cavity.
    Eichenfield M; Camacho R; Chan J; Vahala KJ; Painter O
    Nature; 2009 May; 459(7246):550-5. PubMed ID: 19489118
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Converting microwave and telecom photons with a silicon photonic nanomechanical interface.
    Arnold G; Wulf M; Barzanjeh S; Redchenko ES; Rueda A; Hease WJ; Hassani F; Fink JM
    Nat Commun; 2020 Sep; 11(1):4460. PubMed ID: 32901014
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonreciprocal reconfigurable microwave optomechanical circuit.
    Bernier NR; Tóth LD; Koottandavida A; Ioannou MA; Malz D; Nunnenkamp A; Feofanov AK; Kippenberg TJ
    Nat Commun; 2017 Sep; 8(1):604. PubMed ID: 28928450
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cavity Quantum Optomechanical Nonlinearities and Position Measurement beyond the Breakdown of the Linearized Approximation.
    Clarke J; Neveu P; Khosla KE; Verhagen E; Vanner MR
    Phys Rev Lett; 2023 Aug; 131(5):053601. PubMed ID: 37595248
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hybrid Integration of Silicon Photonic Devices on Lithium Niobate for Optomechanical Wavelength Conversion.
    Marinković I; Drimmer M; Hensen B; Gröblacher S
    Nano Lett; 2021 Jan; 21(1):529-535. PubMed ID: 33393311
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonlinear cavity optomechanics with nanomechanical thermal fluctuations.
    Leijssen R; La Gala GR; Freisem L; Muhonen JT; Verhagen E
    Nat Commun; 2017 Jul; 8():ncomms16024. PubMed ID: 28685755
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optomechanical Microwave-to-Optical Photon Transducer Chips: Empowering the Quantum Internet Revolution.
    Xu X; Zhang Y; Tang J; Chen P; Zeng L; Xia Z; Xing W; Zhou Q; Wang Y; Song H; Guo G; Deng G
    Micromachines (Basel); 2024 Mar; 15(4):. PubMed ID: 38675296
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrically interfaced Brillouin-active waveguide for microwave photonic measurements.
    Zhou Y; Ruesink F; Pavlovich M; Behunin R; Cheng H; Gertler S; Starbuck AL; Leenheer AJ; Pomerene AT; Trotter DC; Musick KM; Gehl M; Kodigala A; Eichenfield M; Lentine AL; Otterstrom N; Rakich P
    Nat Commun; 2024 Aug; 15(1):6796. PubMed ID: 39122672
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanophotonic Atomic Force Microscope Transducers Enable Chemical Composition and Thermal Conductivity Measurements at the Nanoscale.
    Chae J; An S; Ramer G; Stavila V; Holland G; Yoon Y; Talin AA; Allendorf M; Aksyuk VA; Centrone A
    Nano Lett; 2017 Sep; 17(9):5587-5594. PubMed ID: 28770607
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cavity-mediated long-range interactions in levitated optomechanics.
    Vijayan J; Piotrowski J; Gonzalez-Ballestero C; Weber K; Romero-Isart O; Novotny L
    Nat Phys; 2024; 20(5):859-864. PubMed ID: 38799980
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kerr-Enhanced Optical Spring.
    Otabe S; Usukura W; Suzuki K; Komori K; Michimura Y; Harada KI; Somiya K
    Phys Rev Lett; 2024 Apr; 132(14):143602. PubMed ID: 38640396
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient bidirectional piezo-optomechanical transduction between microwave and optical frequency.
    Jiang W; Sarabalis CJ; Dahmani YD; Patel RN; Mayor FM; McKenna TP; Van Laer R; Safavi-Naeini AH
    Nat Commun; 2020 Mar; 11(1):1166. PubMed ID: 32127538
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Classical-to-quantum transition behavior between two oscillators separated in space under the action of optomechanical interaction.
    Bai CH; Wang DY; Wang HF; Zhu AD; Zhang S
    Sci Rep; 2017 May; 7(1):2545. PubMed ID: 28566715
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reconfigurable optomechanical circulator and directional amplifier.
    Shen Z; Zhang YL; Chen Y; Sun FW; Zou XB; Guo GC; Zou CL; Dong CH
    Nat Commun; 2018 May; 9(1):1797. PubMed ID: 29728619
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Elimination of Thermomechanical Noise in Piezoelectric Optomechanical Crystals.
    Ramp H; Hauer BD; Balram KC; Clark TJ; Srinivasan K; Davis JP
    Phys Rev Lett; 2019 Aug; 123(9):093603. PubMed ID: 31524457
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photon Pressure with an Effective Negative Mass Microwave Mode.
    Rodrigues IC; Steele GA; Bothner D
    Phys Rev Lett; 2024 May; 132(20):203603. PubMed ID: 38829070
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gradient-induced long-range optical pulling force based on photonic band gap.
    Lu W; Krasavin AV; Lan S; Zayats AV; Dai Q
    Light Sci Appl; 2024 Apr; 13(1):93. PubMed ID: 38653978
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Yoctonewton force detection based on optically levitated oscillator.
    Liang T; Zhu S; He P; Chen Z; Wang Y; Li C; Fu Z; Gao X; Chen X; Li N; Zhu Q; Hu H
    Fundam Res; 2023 Jan; 3(1):57-62. PubMed ID: 38933574
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum trapping and rotational self-alignment in triangular Casimir microcavities.
    Küçüköz B; Kotov OV; Canales A; Polyakov AY; Agrawal AV; Antosiewicz TJ; Shegai TO
    Sci Adv; 2024 Apr; 10(17):eadn1825. PubMed ID: 38657070
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular Polaritons for Chemistry, Photonics and Quantum Technologies.
    Xiang B; Xiong W
    Chem Rev; 2024 Mar; 124(5):2512-2552. PubMed ID: 38416701
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.