BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 19489626)

  • 1. Rapid and complete degradation of the herbicide picloram by Lipomyces kononenkoae.
    Sadowsky MJ; Koskinen WC; Bischoff M; Barber BL; Becker JM; Turco RF
    J Agric Food Chem; 2009 Jun; 57(11):4878-82. PubMed ID: 19489626
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biodegradation of triazine herbicides on polyvinylalcohol gel plates by the soil yeast Lipomyces starkeyi.
    Nishimura K; Yamamoto M; Nakagomi T; Takiguchi Y; Naganuma T; Uzuka Y
    Appl Microbiol Biotechnol; 2002 May; 58(6):848-52. PubMed ID: 12021808
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Demonstrating formation of potentially persistent transformation products from the herbicides bromoxynil and ioxynil using liquid chromatography-tandem mass spectrometry (LC-MS/MS).
    Nielsen MK; Holtze MS; Svensmark B; Juhler RK
    Pest Manag Sci; 2007 Feb; 63(2):141-9. PubMed ID: 17125153
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Persistence of picloram in soil with different vegetation managements.
    Passos ABRJ; Souza MF; Silva DV; Saraiva DT; da Silva AA; Zanuncio JC; Gonçalves BFS
    Environ Sci Pollut Res Int; 2018 Aug; 25(24):23986-23991. PubMed ID: 29948674
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Degradation of picloram by the electro-Fenton process.
    Ozcan A; Sahin Y; Koparal AS; Oturan MA
    J Hazard Mater; 2008 May; 153(1-2):718-27. PubMed ID: 17935883
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Remediation of waters contaminated with MCPA by the yeasts Lipomyces starkeyi entrapped in a sol-gel zirconia matrix.
    Sannino F; Pirozzi D; Aronne A; Fanelli E; Spaccini R; Yousuf A; Pernice P
    Environ Sci Technol; 2010 Dec; 44(24):9476-81. PubMed ID: 21077667
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Layered double hydroxides as supports for the slow release of acid herbicides.
    Cardoso LP; Celis R; Cornejo J; Valim JB
    J Agric Food Chem; 2006 Aug; 54(16):5968-75. PubMed ID: 16881703
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biodegradation and mineralization of metolachlor and alachlor by Candida xestobii.
    Munoz A; Koskinen WC; Cox L; Sadowsky MJ
    J Agric Food Chem; 2011 Jan; 59(2):619-27. PubMed ID: 21190381
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heterogeneous photocatalytic degradation of picloram, dicamba, and floumeturon in aqueous suspensions of titanium dioxide.
    Atiqur Rahman M; Muneer M
    J Environ Sci Health B; 2005; 40(2):247-67. PubMed ID: 15825681
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Risk of Soil Recontamination Due to Using Eleusine coracana and Panicum maximum Straw After Phytoremediation of Picloram.
    Nascimento AF; Pires FR; Chagas K; de Oliveira Procópio S; Oliveira MA; Cargnelutti Filho A; Belo AF; Egreja Filho FB
    Int J Phytoremediation; 2015; 17(1-6):313-21. PubMed ID: 25409243
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Degradation of herbicide Alvison-8 by microorganisms].
    Finkel'shtein ZI; Golovleva LA; Golovlev EL; Skriabin GK
    Mikrobiologiia; 1976; 45(5):879-83. PubMed ID: 1004275
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toxic effect caused on microflora of soil by pesticide picloram application.
    Prado AG; Airoldi C
    J Environ Monit; 2001 Aug; 3(4):394-7. PubMed ID: 11523439
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microbial degradation of clomazone under simulated California rice field conditions.
    Tomco PL; Holstege DM; Zou W; Tjeerdema RS
    J Agric Food Chem; 2010 Mar; 58(6):3674-80. PubMed ID: 20178392
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biodegradation of acetanilide herbicides acetochlor and butachlor in soil.
    Ye CM; Wang XJ; Zheng HH
    J Environ Sci (China); 2002 Oct; 14(4):524-9. PubMed ID: 12491727
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production of γ-linolenic acid using a novel heterologous expression system in the oleaginous yeast Lipomyces kononenkoae.
    Wang P; Wan X; Zhang Y; Jiang M
    Biotechnol Lett; 2011 Oct; 33(10):1993-8. PubMed ID: 21681556
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluating the degradation of the herbicides picloram and 2,4-D in a compartmentalized reactive biobarrier with internal liquid recirculation.
    Ordaz-Guillén Y; Galíndez-Mayer CJ; Ruiz-Ordaz N; Juárez-Ramírez C; Santoyo-Tepole F; Ramos-Monroy O
    Environ Sci Pollut Res Int; 2014; 21(14):8765-73. PubMed ID: 24737019
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biodegradation of oxadiazon by a soil isolated Pseudomonas fluorescens strain CG5: Implementation in an herbicide removal reactor and modelling.
    Garbi C; Casasús L; Martinez-Alvarez R; Ignacio Robla J; Martín M
    Water Res; 2006 Mar; 40(6):1217-23. PubMed ID: 16516265
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Degradation of acetochlor by four microbial communities.
    Xu J; Yang M; Dai J; Cao H; Pan C; Qiu X; Xu M
    Bioresour Technol; 2008 Nov; 99(16):7797-802. PubMed ID: 18331792
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence for 2,4-D mineralisation in Mediterranean soils: impact of moisture content and temperature.
    Bouseba B; Zertal A; Beguet J; Rouard N; Devers M; Martin C; Martin-Laurent F
    Pest Manag Sci; 2009 Sep; 65(9):1021-9. PubMed ID: 19479783
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biodegradation of alachlor by soil streptomycetes.
    Durães Sette L; Mendonça Alves Da Costa LA; Marsaioli AJ; Manfio GP
    Appl Microbiol Biotechnol; 2004 Jun; 64(5):712-7. PubMed ID: 14727088
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.