These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 194900)

  • 21. Selective N-bromosuccinimide oxidation of the nonfluorescent tryptophan-31 in the active center of thioredoxin from Escherichia coli.
    Holmgren A
    Biochemistry; 1981 May; 20(11):3204-7. PubMed ID: 7018569
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enantiocontrolled synthesis of polychlorinated hydrocarbon motifs: a nucleophilic multiple chlorination process revisited.
    Yoshimitsu T; Fukumoto N; Tanaka T
    J Org Chem; 2009 Jan; 74(2):696-702. PubMed ID: 19053592
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cleavage of the tryptophanyl peptide bond by dimethyl sulfoxide-hydrobromic acid.
    Savige WE; Fontana A
    Methods Enzymol; 1977; 47():459-69. PubMed ID: 200824
    [No Abstract]   [Full Text] [Related]  

  • 24. Crosslinking of cytochrome c and cytochrome b5 with a water-soluble carbodiimide. Reaction conditions, product analysis and critique of the technique.
    Mauk MR; Mauk AG
    Eur J Biochem; 1989 Dec; 186(3):473-86. PubMed ID: 2558010
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The role of tryptophanyl residues in electron transfer from NADPH--adrenodoxin reductase to adrenodoxin.
    Sarkissova YG; Mardanian SS; Haroutunian AV
    Biochem Int; 1990 Dec; 22(6):977-82. PubMed ID: 1965282
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reaction of ozone with protein tryptophans: band III, serum albumin, and cytochrome C.
    Mudd JB; Dawson PJ; Tseng S; Liu FP
    Arch Biochem Biophys; 1997 Feb; 338(2):143-9. PubMed ID: 9028865
    [TBL] [Abstract][Full Text] [Related]  

  • 27. New selectivity in peptide hydrolysis by metal complexes. Platinum(II) complexes promote cleavage of peptides next to the tryptophan residue.
    Kaminskaia NV; Kostic NM
    Inorg Chem; 2001 May; 40(10):2368-77. PubMed ID: 11327915
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Oxidative cleavage of tryptophanyl peptide bonds during chemical- and peroxidase-catalyzed iodinations.
    Alexander NM
    J Biol Chem; 1974 Mar; 249(6):1946-52. PubMed ID: 4817970
    [No Abstract]   [Full Text] [Related]  

  • 29. N-Bromosuccinimide modification of Lac repressor protein.
    O'Gorman RB; Matthews KS
    J Biol Chem; 1977 Jun; 252(11):3565-71. PubMed ID: 324997
    [No Abstract]   [Full Text] [Related]  

  • 30. Site-selective chemical cleavage of peptide bonds.
    Elashal HE; Raj M
    Chem Commun (Camb); 2016 May; 52(37):6304-7. PubMed ID: 27087443
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Determination of sulfur amino acids and tryptophan in foods and food and feed ingredients: collaborative study.
    Allred MC; MacDonald JL
    J Assoc Off Anal Chem; 1988; 71(3):603-6. PubMed ID: 3391969
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fragmentation of proteins with o-iodosobenzoic acid: chemical mechanism and identification of o-iodoxybenzoic acid as a reactive contaminant that modifies tyrosyl residues.
    Mahoney WC; Smith PK; Hermodson MA
    Biochemistry; 1981 Jan; 20(2):443-8. PubMed ID: 7470493
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparison of two chemical cleavage methods for preparation of a truncated form of recombinant human insulin-like growth factor I from a secreted fusion protein.
    Forsberg G; Baastrup B; Brobjer M; Lake M; Jörnvall H; Hartmanis M
    Biofactors; 1989 Dec; 2(2):105-12. PubMed ID: 2696476
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Chemical modification of rat liver arginase.
    Ber E; Muszyńska G
    Acta Biochim Pol; 1979; 26(1-2):103-14. PubMed ID: 506610
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Chemical modification studies on the Ca2+-dependent protein modulator: the role of methionine residues in the activation of cyclic nucleotide phosphodiesterase.
    Walsh M; Stevens FC
    Biochemistry; 1978 Sep; 17(19):3924-8. PubMed ID: 213097
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The nonpolar peptide segment of cytochrome b5. Binding to phospholipid vesicles and identification of the fluorescent tryptophanyl residue.
    Fleming PJ; Strittmatter P
    J Biol Chem; 1978 Nov; 253(22):8198-202. PubMed ID: 711745
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The chemical and kinetic consequences of the modification of papain by N-bromosuccinimide.
    Glick BR; Brubacher LJ
    Can J Biochem; 1977 Apr; 55(4):424-32. PubMed ID: 15710
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Circular dichroism studies of N-bromosuccinimide-modified horse heart cytochrome c preparations.
    Myer YP
    Biochemistry; 1972 Nov; 11(23):4203-8. PubMed ID: 4342900
    [No Abstract]   [Full Text] [Related]  

  • 39. Interplay of terminal amino group and coordinating side chains in directing regioselective cleavage of natural peptides and proteins with palladium(II) complexes.
    Milović NM; Kostić NM
    Inorg Chem; 2002 Dec; 41(26):7053-63. PubMed ID: 12495344
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Amino acid sequence of a cyanogen bromide fragment containing the two tryptophanyl residues of lobster arginine kinase (Homarus vulgaris).
    Debuire B; Han KK; Dautrevaux M; Biserte G; Regnouf F; Kassab R
    J Biochem; 1977 Mar; 81(3):611-9. PubMed ID: 16871
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.