These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Structural basis for the catalytic mechanism of aspartate ammonia lyase. Fibriansah G; Veetil VP; Poelarends GJ; Thunnissen AM Biochemistry; 2011 Jul; 50(27):6053-62. PubMed ID: 21661762 [TBL] [Abstract][Full Text] [Related]
3. Cloning and over-expression of thermostable Bacillus sp. YM55-1 aspartase and site-directed mutagenesis for probing a catalytic residue. Kawata Y; Tamura K; Kawamura M; Ikei K; Mizobata T; Nagai J; Fujita M; Yano S; Tokushige M; Yumoto N Eur J Biochem; 2000 Mar; 267(6):1847-57. PubMed ID: 10712618 [TBL] [Abstract][Full Text] [Related]
4. Immobilized L-aspartate ammonia-lyase from Bacillus sp. YM55-1 as biocatalyst for highly concentrated L-aspartate synthesis. Cárdenas-Fernández M; López C; Alvaro G; López-Santín J Bioprocess Biosyst Eng; 2012 Oct; 35(8):1437-44. PubMed ID: 22527030 [TBL] [Abstract][Full Text] [Related]
5. His68 and His141 are critical contributors to the intersubunit catalytic site of adenylosuccinate lyase of Bacillus subtilis. Lee TT; Worby C; Bao ZQ; Dixon JE; Colman RF Biochemistry; 1999 Jan; 38(1):22-32. PubMed ID: 9890879 [TBL] [Abstract][Full Text] [Related]
7. Aspartase/fumarase superfamily: a common catalytic strategy involving general base-catalyzed formation of a highly stabilized aci-carboxylate intermediate. Puthan Veetil V; Fibriansah G; Raj H; Thunnissen AM; Poelarends GJ Biochemistry; 2012 May; 51(21):4237-43. PubMed ID: 22551392 [TBL] [Abstract][Full Text] [Related]
8. A QM/MM study of the catalytic mechanism of aspartate ammonia lyase. Zhang J; Liu Y J Mol Graph Model; 2014 Jun; 51():113-9. PubMed ID: 24875395 [TBL] [Abstract][Full Text] [Related]
9. Role of aspartate-133 and histidine-458 in the mechanism of tryptophan indole-lyase from Proteus vulgaris. Demidkina TV; Zakomirdina LN; Kulikova VV; Dementieva IS; Faleev NG; Ronda L; Mozzarelli A; Gollnick PD; Phillips RS Biochemistry; 2003 Sep; 42(38):11161-9. PubMed ID: 14503866 [TBL] [Abstract][Full Text] [Related]
10. Site-directed mutagenesis of an alkaline phytase: influencing specificity, activity and stability in acidic milieu. Tran TT; Mamo G; Búxo L; Le NN; Gaber Y; Mattiasson B; Hatti-Kaul R Enzyme Microb Technol; 2011 Jul; 49(2):177-82. PubMed ID: 22112406 [TBL] [Abstract][Full Text] [Related]
11. Crystal structure of thermostable aspartase from Bacillus sp. YM55-1: structure-based exploration of functional sites in the aspartase family. Fujii T; Sakai H; Kawata Y; Hata Y J Mol Biol; 2003 May; 328(3):635-54. PubMed ID: 12706722 [TBL] [Abstract][Full Text] [Related]
12. Site-directed mutagenesis of active site residues of phosphite dehydrogenase. Woodyer R; Wheatley JL; Relyea HA; Rimkus S; van der Donk WA Biochemistry; 2005 Mar; 44(12):4765-74. PubMed ID: 15779903 [TBL] [Abstract][Full Text] [Related]
13. Alteration of the diastereoselectivity of 3-methylaspartate ammonia lyase by using structure-based mutagenesis. Raj H; Weiner B; Veetil VP; Reis CR; Quax WJ; Janssen DB; Feringa BL; Poelarends GJ Chembiochem; 2009 Sep; 10(13):2236-45. PubMed ID: 19670200 [TBL] [Abstract][Full Text] [Related]
14. Evaluation of functionally important amino acids in L-aspartate ammonia-lyase from Escherichia coli. Jayasekera MM; Shi W; Farber GK; Viola RE Biochemistry; 1997 Jul; 36(30):9145-50. PubMed ID: 9230046 [TBL] [Abstract][Full Text] [Related]
15. Structural and Biochemical Characterization of a Copper-Binding Mutant of the Organomercurial Lyase MerB: Insight into the Key Role of the Active Site Aspartic Acid in Hg-Carbon Bond Cleavage and Metal Binding Specificity. Wahba HM; Lecoq L; Stevenson M; Mansour A; Cappadocia L; Lafrance-Vanasse J; Wilkinson KJ; Sygusch J; Wilcox DE; Omichinski JG Biochemistry; 2016 Feb; 55(7):1070-81. PubMed ID: 26820485 [TBL] [Abstract][Full Text] [Related]
16. Mutational, kinetic, and NMR studies of the roles of conserved glutamate residues and of lysine-39 in the mechanism of the MutT pyrophosphohydrolase. Harris TK; Wu G; Massiah MA; Mildvan AS Biochemistry; 2000 Feb; 39(7):1655-74. PubMed ID: 10677214 [TBL] [Abstract][Full Text] [Related]
17. L-aspartase: new tricks from an old enzyme. Viola RE Adv Enzymol Relat Areas Mol Biol; 2000; 74():295-341. PubMed ID: 10800598 [TBL] [Abstract][Full Text] [Related]
18. Identification of quasi-stable water molecules near the Thr73-Lys13 catalytic diad of Bacillus sp. TB-90 urate oxidase by X-ray crystallography with controlled humidity. Hibi T; Itoh T J Biochem; 2021 Feb; 169(1):15-23. PubMed ID: 33002140 [TBL] [Abstract][Full Text] [Related]
19. Probing the catalytic mechanism of prephenate dehydratase by site-directed mutagenesis of the Escherichia coli P-protein dehydratase domain. Zhang S; Wilson DB; Ganem B Biochemistry; 2000 Apr; 39(16):4722-8. PubMed ID: 10769128 [TBL] [Abstract][Full Text] [Related]
20. A catalytic triad is responsible for acid-base chemistry in the Ascaris suum NAD-malic enzyme. Karsten WE; Liu D; Rao GS; Harris BG; Cook PF Biochemistry; 2005 Mar; 44(9):3626-35. PubMed ID: 15736972 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]