These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1033 related articles for article (PubMed ID: 19490103)
41. Mapping the mechanism-based modification sites in L-aspartase from Escherichia coli. Giorgianni F; Beranová S; Wesdemiotis C; Viola RE Arch Biochem Biophys; 1997 May; 341(2):329-36. PubMed ID: 9169023 [TBL] [Abstract][Full Text] [Related]
42. Crystal structure of the nitrosuccinate lyase CreD in complex with fumarate provides insights into the catalytic mechanism for nitrous acid elimination. Katsuyama Y; Sato Y; Sugai Y; Higashiyama Y; Senda M; Senda T; Ohnishi Y FEBS J; 2018 Apr; 285(8):1540-1555. PubMed ID: 29505698 [TBL] [Abstract][Full Text] [Related]
43. Critical role of arginine 160 of the EutB protein subunit for active site structure and radical catalysis in coenzyme B12-dependent ethanolamine ammonia-lyase. Sun L; Groover OA; Canfield JM; Warncke K Biochemistry; 2008 May; 47(20):5523-35. PubMed ID: 18444665 [TBL] [Abstract][Full Text] [Related]
44. L-aspartase from Escherichia coli: substrate specificity and role of divalent metal ions. Falzone CJ; Karsten WE; Conley JD; Viola RE Biochemistry; 1988 Dec; 27(26):9089-93. PubMed ID: 2853974 [TBL] [Abstract][Full Text] [Related]
45. Structural studies of AntD: an N-Acyltransferase involved in the biosynthesis of D-Anthrose. Kubiak RL; Holden HM Biochemistry; 2012 Jan; 51(4):867-78. PubMed ID: 22220494 [TBL] [Abstract][Full Text] [Related]
46. Cysteine 42 is important for maintaining an integral active site for O-acetylserine sulfhydrylase resulting in the stabilization of the alpha-aminoacrylate intermediate. Tai CH; Yoon MY; Kim SK; Rege VD; Nalabolu SR; Kredich NM; Schnackerz KD; Cook PF Biochemistry; 1998 Jul; 37(30):10597-604. PubMed ID: 9692949 [TBL] [Abstract][Full Text] [Related]
47. Product catalyzes the deamidation of D145N dehalogenase to produce the wild-type enzyme. Xiang H; Dong J; Carey PR; Dunaway-Mariano D Biochemistry; 1999 Mar; 38(13):4207-13. PubMed ID: 10194337 [TBL] [Abstract][Full Text] [Related]
48. Mutational analysis of amino acid residues involved in argininosuccinate lyase activity in duck delta II crystallin. Chakraborty AR; Davidson A; Howell PL Biochemistry; 1999 Feb; 38(8):2435-43. PubMed ID: 10029537 [TBL] [Abstract][Full Text] [Related]
49. Roles of histidines 154 and 189 and aspartate 139 in the active site of serine acetyltransferase from Haemophilus influenzae. Guan R; Roderick SL; Huang B; Cook PF Biochemistry; 2008 Jun; 47(24):6322-8. PubMed ID: 18498176 [TBL] [Abstract][Full Text] [Related]
50. Effects of mutations of the active site arginine residues in 4-oxalocrotonate tautomerase on the pKa values of active site residues and on the pH dependence of catalysis. Czerwinski RM; Harris TK; Johnson WH; Legler PM; Stivers JT; Mildvan AS; Whitman CP Biochemistry; 1999 Sep; 38(38):12358-66. PubMed ID: 10493803 [TBL] [Abstract][Full Text] [Related]
51. His...Asp catalytic dyad of ribonuclease A: structure and function of the wild-type, D121N, and D121A enzymes. Schultz LW; Quirk DJ; Raines RT Biochemistry; 1998 Jun; 37(25):8886-98. PubMed ID: 9636030 [TBL] [Abstract][Full Text] [Related]
52. The role of lysine-234 in beta-lactamase catalysis probed by site-directed mutagenesis. Ellerby LM; Escobar WA; Fink AL; Mitchinson C; Wells JA Biochemistry; 1990 Jun; 29(24):5797-806. PubMed ID: 1974463 [TBL] [Abstract][Full Text] [Related]
53. Amino acid-dependent growth of Campylobacter jejuni: key roles for aspartase (AspA) under microaerobic and oxygen-limited conditions and identification of AspB (Cj0762), essential for growth on glutamate. Guccione E; Leon-Kempis Mdel R; Pearson BM; Hitchin E; Mulholland F; van Diemen PM; Stevens MP; Kelly DJ Mol Microbiol; 2008 Jul; 69(1):77-93. PubMed ID: 18433445 [TBL] [Abstract][Full Text] [Related]
54. Investigation of a catalytic zinc binding site in Escherichia coli L-threonine dehydrogenase by site-directed mutagenesis of cysteine-38. Johnson AR; Chen YW; Dekker EE Arch Biochem Biophys; 1998 Oct; 358(2):211-21. PubMed ID: 9784233 [TBL] [Abstract][Full Text] [Related]
56. Role of active-site residues Tyr55 and Tyr114 in catalysis and substrate specificity of Corynebacterium diphtheriae C-S lyase. Astegno A; Allegrini A; Piccoli S; Giorgetti A; Dominici P Proteins; 2015 Jan; 83(1):78-90. PubMed ID: 25354840 [TBL] [Abstract][Full Text] [Related]
57. Characterization of human UDP-glucose dehydrogenase reveals critical catalytic roles for lysine 220 and aspartate 280. Easley KE; Sommer BJ; Boanca G; Barycki JJ; Simpson MA Biochemistry; 2007 Jan; 46(2):369-78. PubMed ID: 17209547 [TBL] [Abstract][Full Text] [Related]
58. Kinetic studies of L-aspartase from Escherichia coli: substrate activation. Karsten WE; Gates RB; Viola RE Biochemistry; 1986 Mar; 25(6):1299-303. PubMed ID: 3516219 [TBL] [Abstract][Full Text] [Related]
59. (S)-Mandelate dehydrogenase from Pseudomonas putida: mutations of the catalytic base histidine-274 and chemical rescue of activity. Lehoux IE; Mitra B Biochemistry; 1999 Aug; 38(31):9948-55. PubMed ID: 10433701 [TBL] [Abstract][Full Text] [Related]
60. Kinetic analysis of the zinc-dependent deacetylase in the lipid A biosynthetic pathway. McClerren AL; Zhou P; Guan Z; Raetz CR; Rudolph J Biochemistry; 2005 Feb; 44(4):1106-13. PubMed ID: 15667204 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]