These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 1949012)

  • 1. Enhanced proteolysis and changes in membrane-associated calpain following phenylhydrazine insult to human red cells.
    Mortensen AM; Novak RF
    Toxicol Appl Pharmacol; 1991 Sep; 110(3):435-49. PubMed ID: 1949012
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic changes in the distribution of the calcium-activated neutral protease in human red blood cells following cellular insult and altered Ca2+ homeostasis.
    Mortensen AM; Novak RF
    Toxicol Appl Pharmacol; 1992 Dec; 117(2):180-8. PubMed ID: 1471149
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of hydrazine-stimulated proteolysis in human erythrocytes.
    Runge-Morris MA; Iacob S; Novak RF
    Toxicol Appl Pharmacol; 1988 Jul; 94(3):414-26. PubMed ID: 2840755
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of phenelzine and hydralazine on hydrogen peroxide production and proteolysis in human red blood cells.
    Runge-Morris M; Novak RF
    J Pharmacol Exp Ther; 1993 Dec; 267(3):1401-6. PubMed ID: 8263801
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spectrin degradation in intact red blood cells by phenylhydrazine.
    Arduini A; Stern A
    Biochem Pharmacol; 1985 Dec; 34(24):4283-9. PubMed ID: 4074388
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential effects of organic hydroperoxides and hydrogen peroxide on proteolysis in human erythrocytes.
    Runge-Morris M; Frank P; Novak RF
    Chem Res Toxicol; 1989; 2(2):76-83. PubMed ID: 2519713
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phenylhydrazine causes sulfhydryl oxidation and protein aggregation in hemoglobin-free human erythrocyte membranes.
    Hashmi AN; Saleemuddin M
    Biochem Mol Biol Int; 1996 Oct; 40(3):543-50. PubMed ID: 8908364
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrazine-mediated DNA damage: role of hemoprotein, electron transport, and organic free radicals.
    Runge-Morris M; Wu N; Novak RF
    Toxicol Appl Pharmacol; 1994 Mar; 125(1):123-32. PubMed ID: 8128487
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Age-related and phenylhydrazine-induced activation of the membrane-associated cathepsin E in human erythrocytes.
    Yamamoto K; Yamada M; Kato Y
    J Biochem; 1989 Jan; 105(1):114-9. PubMed ID: 2738038
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Erythrocyte membrane protein damage by oxidation products of phenylhydrazine.
    Chakrabarti S; Sonaye B; Naik AA; Nadkarni PP
    Biochem Mol Biol Int; 1995 Feb; 35(2):255-63. PubMed ID: 7663379
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phenylhydrazine mediated degradation of bovine serum albumin and membrane proteins of human erythrocytes.
    Chakrabarti S; Naik AA; Reddy GR
    Biochim Biophys Acta; 1990 Sep; 1028(1):89-94. PubMed ID: 2169881
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of oxidative stress and erythropoietin on cytoskeletal protein and lipid organization in human erythrocytes.
    Choudhury TD; Das N; Chattopadhyay A; Datta AG
    Pol J Pharmacol; 1999; 51(4):341-50. PubMed ID: 10540966
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phorbol 12-myristate 13-acetate-stimulated phosphorylation of erythrocyte membrane skeletal proteins is blocked by calpain inhibitors: possible role of protein kinase M.
    Al Z; Cohen CM
    Biochem J; 1993 Dec; 296 ( Pt 3)(Pt 3):675-83. PubMed ID: 8280066
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism of spectrin degradation induced by phenylhydrazine in intact human erythrocytes.
    Arduini A; Storto S; Belfiglio M; Scurti R; Mancinelli G; Federici G
    Biochim Biophys Acta; 1989 Feb; 979(1):1-6. PubMed ID: 2917160
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Melatonin protects human red blood cells from oxidative hemolysis: new insights into the radical-scavenging activity.
    Tesoriere L; D'Arpa D; Conti S; Giaccone V; Pintaudi AM; Livrea MA
    J Pineal Res; 1999 Sep; 27(2):95-105. PubMed ID: 10496145
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro digestion of spectrin, protein 4.1 and ankyrin by erythrocyte calcium dependent neutral protease (calpain I).
    Boivin P; Galand C; Dhermy D
    Int J Biochem; 1990; 22(12):1479-89. PubMed ID: 2148914
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of calpain and calpastatin in the catabolism of erythrocyte-membrane proteins during anaemia in hamsters (Mesocricetus auretus) infected with Leishmania donovani.
    Sen G; Ghosal J; Biswas T
    Ann Trop Med Parasitol; 2002 Dec; 96(8):787-96. PubMed ID: 12625933
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of free radical scavengers and metal ion chelators on hydrogen peroxide and phenylhydrazine induced red blood cell lipid peroxidation.
    Einsele H; Clemens MR; Wegner U; Waller HD
    Free Radic Res Commun; 1987; 3(1-5):257-63. PubMed ID: 3149947
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of ethanol and formate radicals on erythrocyte membrane proteins.
    SoszyƄski M; Schuessler H
    Int J Radiat Biol; 1998 Feb; 73(2):211-8. PubMed ID: 9489569
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Limited proteolysis of the erythrocyte membrane skeleton by calcium-dependent proteinases.
    Croall DE; Morrow JS; DeMartino GN
    Biochim Biophys Acta; 1986 Jul; 882(3):287-96. PubMed ID: 3015225
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.