These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 19490795)

  • 21. Physical stresses at the air-wall interface of the human nasal cavity during breathing.
    Elad D; Naftali S; Rosenfeld M; Wolf M
    J Appl Physiol (1985); 2006 Mar; 100(3):1003-10. PubMed ID: 16269523
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Suturing of Little's area of the nasal septum for epistaxis.
    ZhengHua Z; Gang F; BingWei Z; JiaWen C
    J Laryngol Otol; 2009 Jul; 123(7):787-8. PubMed ID: 19152725
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Aerodynamic effects of inferior turbinate reduction: computational fluid dynamics simulation.
    Wexler D; Segal R; Kimbell J
    Arch Otolaryngol Head Neck Surg; 2005 Dec; 131(12):1102-7. PubMed ID: 16365225
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Numerical simulations for detailed airflow dynamics in a human nasal cavity.
    Wen J; Inthavong K; Tu J; Wang S
    Respir Physiol Neurobiol; 2008 Apr; 161(2):125-35. PubMed ID: 18378196
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Numerical simulation of airflow patterns and air temperature distribution during inspiration in a nose model with septal perforation.
    Pless D; Keck T; Wiesmiller KM; Lamche R; Aschoff AJ; Lindemann J
    Am J Rhinol; 2004; 18(6):357-62. PubMed ID: 15706981
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evaluation and comparison of nasal airway flow patterns among three subjects from Caucasian, Chinese and Indian ethnic groups using computational fluid dynamics simulation.
    Zhu JH; Lee HP; Lim KM; Lee SJ; Wang de Y
    Respir Physiol Neurobiol; 2011 Jan; 175(1):62-9. PubMed ID: 20854936
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Effect of removing turbinate on the airflow distribution in nasal cavity].
    Liu Y; Yu S; Sun X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Dec; 25(6):1315-8. PubMed ID: 19166200
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An overview of numerical modelling of nasal airflow.
    Bailie N; Hanna B; Watterson J; Gallagher G
    Rhinology; 2006 Mar; 44(1):53-7. PubMed ID: 16550951
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Assessments of nasal bone fracture effects on nasal airflow: A computational fluid dynamics study.
    Chen XB; Lee HP; Chong VF; Wang de Y
    Am J Rhinol Allergy; 2011; 25(1):e39-43. PubMed ID: 21711975
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Details of the physiology of the aerodynamic and heat and moisture transfer in the normal nasal cavity.
    Hazeri M; Farshidfar Z; Faramarzi M; Sadrizadeh S; Abouali O
    Respir Physiol Neurobiol; 2020 Sep; 280():103480. PubMed ID: 32553890
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Numerical study of the aerodynamic effects of septoplasty and partial lateral turbinectomy.
    Ozlugedik S; Nakiboglu G; Sert C; Elhan A; Tonuk E; Akyar S; Tekdemir I
    Laryngoscope; 2008 Feb; 118(2):330-4. PubMed ID: 18030167
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nasal air conditioning following total inferior turbinectomy compared to inferior turbinoplasty - A computational fluid dynamics study.
    Siu J; Inthavong K; Dong J; Shang Y; Douglas RG
    Clin Biomech (Bristol, Avon); 2021 Jan; 81():105237. PubMed ID: 33272646
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Three dimensional reconstruction of the nasal cavity structure and numerical simulation of airflow].
    Sun X; Yu S; Liu Y; Zheng Z; Zhang J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Dec; 23(6):1162-5. PubMed ID: 17228700
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In vitro experiments and numerical simulations of airflow in realistic nasal airway geometry.
    Croce C; Fodil R; Durand M; Sbirlea-Apiou G; Caillibotte G; Papon JF; Blondeau JR; Coste A; Isabey D; Louis B
    Ann Biomed Eng; 2006 Jun; 34(6):997-1007. PubMed ID: 16783655
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Morphological variation and airflow dynamics in the human nose.
    Churchill SE; Shackelford LL; Georgi JN; Black MT
    Am J Hum Biol; 2004; 16(6):625-38. PubMed ID: 15495233
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Numerical simulation of intranasal airflow in nasal numerical models with nasal septum perforations of different locations and sizes].
    Wang T; Wang PH; Chen D; Xu Z; Deng J
    Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2020 Mar; 55(3):209-216. PubMed ID: 32268688
    [No Abstract]   [Full Text] [Related]  

  • 37. Influence of nasal structure on the distribution of airflow in nasal cavity.
    Yu S; Liu Y; Sun X; Li S
    Rhinology; 2008 Jun; 46(2):137-43. PubMed ID: 18575016
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Computer simulation of inspiratory nasal airflow and inhaled gas uptake in a rhesus monkey.
    Kepler GM; Richardson RB; Morgan KT; Kimbell JS
    Toxicol Appl Pharmacol; 1998 May; 150(1):1-11. PubMed ID: 9630447
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparison of micron- and nanoparticle deposition patterns in a realistic human nasal cavity.
    Wang SM; Inthavong K; Wen J; Tu JY; Xue CL
    Respir Physiol Neurobiol; 2009 May; 166(3):142-51. PubMed ID: 19442930
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nasal-air conditioning in patients with chronic rhinosinusitis and nasal polyposis.
    Papp J; Leiacker R; Keck T; Rozsasi A; Kappe T
    Arch Otolaryngol Head Neck Surg; 2008 Sep; 134(9):931-5. PubMed ID: 18794436
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.