BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 19491108)

  • 1. The biological activity of the prototypic cyclotide kalata b1 is modulated by the formation of multimeric pores.
    Huang YH; Colgrave ML; Daly NL; Keleshian A; Martinac B; Craik DJ
    J Biol Chem; 2009 Jul; 284(31):20699-707. PubMed ID: 19491108
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alanine scanning mutagenesis of the prototypic cyclotide reveals a cluster of residues essential for bioactivity.
    Simonsen SM; Sando L; Rosengren KJ; Wang CK; Colgrave ML; Daly NL; Craik DJ
    J Biol Chem; 2008 Apr; 283(15):9805-13. PubMed ID: 18258598
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cyclotides: natural, circular plant peptides that possess significant activity against gastrointestinal nematode parasites of sheep.
    Colgrave ML; Kotze AC; Huang YH; O'Grady J; Simonsen SM; Craik DJ
    Biochemistry; 2008 May; 47(20):5581-9. PubMed ID: 18426225
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lysine-scanning mutagenesis reveals an amendable face of the cyclotide kalata B1 for the optimization of nematocidal activity.
    Huang YH; Colgrave ML; Clark RJ; Kotze AC; Craik DJ
    J Biol Chem; 2010 Apr; 285(14):10797-805. PubMed ID: 20103593
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Orientation and Location of the Cyclotide Kalata B1 in Lipid Bilayers Revealed by Solid-State NMR.
    Grage SL; Sani MA; Cheneval O; Henriques ST; Schalck C; Heinzmann R; Mylne JS; Mykhailiuk PK; Afonin S; Komarov IV; Separovic F; Craik DJ; Ulrich AS
    Biophys J; 2017 Feb; 112(4):630-642. PubMed ID: 28256223
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conformation and mode of membrane interaction in cyclotides. Spatial structure of kalata B1 bound to a dodecylphosphocholine micelle.
    Shenkarev ZO; Nadezhdin KD; Sobol VA; Sobol AG; Skjeldal L; Arseniev AS
    FEBS J; 2006 Jun; 273(12):2658-72. PubMed ID: 16817894
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal, chemical, and enzymatic stability of the cyclotide kalata B1: the importance of the cyclic cystine knot.
    Colgrave ML; Craik DJ
    Biochemistry; 2004 May; 43(20):5965-75. PubMed ID: 15147180
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Disulfide folding pathways of cystine knot proteins. Tying the knot within the circular backbone of the cyclotides.
    Daly NL; Clark RJ; Craik DJ
    J Biol Chem; 2003 Feb; 278(8):6314-22. PubMed ID: 12482862
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidative folding of the cystine knot motif in cyclotide proteins.
    Craik DJ; Daly NL
    Protein Pept Lett; 2005 Feb; 12(2):147-52. PubMed ID: 15723640
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kalata B8, a novel antiviral circular protein, exhibits conformational flexibility in the cystine knot motif.
    Daly NL; Clark RJ; Plan MR; Craik DJ
    Biochem J; 2006 Feb; 393(Pt 3):619-26. PubMed ID: 16207177
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Synthetic mirror image of kalata B1 reveals that cyclotide activity is independent of a protein receptor.
    Sando L; Henriques ST; Foley F; Simonsen SM; Daly NL; Hall KN; Gustafson KR; Aguilar MI; Craik DJ
    Chembiochem; 2011 Nov; 12(16):2456-62. PubMed ID: 21928440
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biosynthesis of circular proteins in plants.
    Gillon AD; Saska I; Jennings CV; Guarino RF; Craik DJ; Anderson MA
    Plant J; 2008 Feb; 53(3):505-15. PubMed ID: 18086282
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The self-association of the cyclotide kalata B2 in solution is guided by hydrophobic interactions.
    Rosengren KJ; Daly NL; Harvey PJ; Craik DJ
    Biopolymers; 2013 Sep; 100(5):453-60. PubMed ID: 23893463
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Disulfide mapping of the cyclotide kalata B1. Chemical proof of the cystic cystine knot motif.
    Göransson U; Craik DJ
    J Biol Chem; 2003 Nov; 278(48):48188-96. PubMed ID: 12960160
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Studies on the membrane interactions of the cyclotides kalata B1 and kalata B6 on model membrane systems by surface plasmon resonance.
    Kamimori H; Hall K; Craik DJ; Aguilar MI
    Anal Biochem; 2005 Feb; 337(1):149-53. PubMed ID: 15649388
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cyclotides insert into lipid bilayers to form membrane pores and destabilize the membrane through hydrophobic and phosphoethanolamine-specific interactions.
    Wang CK; Wacklin HP; Craik DJ
    J Biol Chem; 2012 Dec; 287(52):43884-98. PubMed ID: 23129773
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of conserved Glu residue on cyclotide stability and activity: a structural and functional study of kalata B12, a naturally occurring Glu to Asp mutant.
    Wang CK; Clark RJ; Harvey PJ; Rosengren KJ; Cemazar M; Craik DJ
    Biochemistry; 2011 May; 50(19):4077-86. PubMed ID: 21466163
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Decoding the membrane activity of the cyclotide kalata B1: the importance of phosphatidylethanolamine phospholipids and lipid organization on hemolytic and anti-HIV activities.
    Henriques ST; Huang YH; Rosengren KJ; Franquelim HG; Carvalho FA; Johnson A; Sonza S; Tachedjian G; Castanho MA; Daly NL; Craik DJ
    J Biol Chem; 2011 Jul; 286(27):24231-41. PubMed ID: 21576247
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cyclotides, a versatile ultrastable micro-protein scaffold for biotechnological applications.
    Camarero JA
    Bioorg Med Chem Lett; 2017 Dec; 27(23):5089-5099. PubMed ID: 29110985
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural plasticity of the cyclic-cystine-knot framework: implications for biological activity and drug design.
    Clark RJ; Daly NL; Craik DJ
    Biochem J; 2006 Feb; 394(Pt 1):85-93. PubMed ID: 16300479
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.