These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
470 related articles for article (PubMed ID: 19491442)
1. A modelling study to inform specification and optimal electrode placement for imaging of neuronal depolarization during visual evoked responses by electrical and magnetic detection impedance tomography. Gilad O; Horesh L; Holder DS Physiol Meas; 2009 Jun; 30(6):S201-24. PubMed ID: 19491442 [TBL] [Abstract][Full Text] [Related]
2. Impedance changes recorded with scalp electrodes during visual evoked responses: implications for Electrical Impedance Tomography of fast neural activity. Gilad O; Holder DS Neuroimage; 2009 Aug; 47(2):514-22. PubMed ID: 19426819 [TBL] [Abstract][Full Text] [Related]
3. Use of anisotropic modelling in electrical impedance tomography: description of method and preliminary assessment of utility in imaging brain function in the adult human head. Abascal JF; Arridge SR; Atkinson D; Horesh R; Fabrizi L; De Lucia M; Horesh L; Bayford RH; Holder DS Neuroimage; 2008 Nov; 43(2):258-68. PubMed ID: 18694835 [TBL] [Abstract][Full Text] [Related]
4. Factors limiting the application of electrical impedance tomography for identification of regional conductivity changes using scalp electrodes during epileptic seizures in humans. Fabrizi L; Sparkes M; Horesh L; Perez-Juste Abascal JF; McEwan A; Bayford RH; Elwes R; Binnie CD; Holder DS Physiol Meas; 2006 May; 27(5):S163-74. PubMed ID: 16636408 [TBL] [Abstract][Full Text] [Related]
6. Analysis of resting noise characteristics of three EIT systems in order to compare suitability for time difference imaging with scalp electrodes during epileptic seizures. Fabrizi L; McEwan A; Woo E; Holder DS Physiol Meas; 2007 Jul; 28(7):S217-36. PubMed ID: 17664637 [TBL] [Abstract][Full Text] [Related]
7. Multi-frequency electrical impedance tomography (EIT) of the adult human head: initial findings in brain tumours, arteriovenous malformations and chronic stroke, development of an analysis method and calibration. Romsauerova A; McEwan A; Horesh L; Yerworth R; Bayford RH; Holder DS Physiol Meas; 2006 May; 27(5):S147-61. PubMed ID: 16636407 [TBL] [Abstract][Full Text] [Related]
8. An electrode addressing protocol for imaging brain function with electrical impedance tomography using a 16-channel semi-parallel system. Fabrizi L; McEwan A; Oh T; Woo EJ; Holder DS Physiol Meas; 2009 Jun; 30(6):S85-101. PubMed ID: 19491446 [TBL] [Abstract][Full Text] [Related]
9. Electrical impedance tomography of human brain function using reconstruction algorithms based on the finite element method. Bagshaw AP; Liston AD; Bayford RH; Tizzard A; Gibson AP; Tidswell AT; Sparkes MK; Dehghani H; Binnie CD; Holder DS Neuroimage; 2003 Oct; 20(2):752-64. PubMed ID: 14568449 [TBL] [Abstract][Full Text] [Related]
10. Imaging cerebral haemorrhage with magnetic induction tomography: numerical modelling. Zolgharni M; Ledger PD; Armitage DW; Holder DS; Griffiths H Physiol Meas; 2009 Jun; 30(6):S187-200. PubMed ID: 19491437 [TBL] [Abstract][Full Text] [Related]
11. Comparison of methods for optimal choice of the regularization parameter for linear electrical impedance tomography of brain function. Abascal JF; Arridge SR; Bayford RH; Holder DS Physiol Meas; 2008 Nov; 29(11):1319-34. PubMed ID: 18854604 [TBL] [Abstract][Full Text] [Related]
12. Krylov subspace iterative techniques: on the detection of brain activity with electrical impedance tomography. Polydorides N; Lionheart WR; McCann H IEEE Trans Med Imaging; 2002 Jun; 21(6):596-603. PubMed ID: 12166855 [TBL] [Abstract][Full Text] [Related]
13. In vivo electrical stimulation of rabbit retina with a microfabricated array: strategies to maximize responses for prospective assessment of stimulus efficacy and biocompatibility. Rizzo JF; Goldbaum S; Shahin M; Denison TJ; Wyatt J Restor Neurol Neurosci; 2004; 22(6):429-43. PubMed ID: 15798362 [TBL] [Abstract][Full Text] [Related]
14. A comparison of two EIT systems suitable for imaging impedance changes in epilepsy. Fabrizi L; McEwan A; Oh T; Woo EJ; Holder DS Physiol Meas; 2009 Jun; 30(6):S103-20. PubMed ID: 19491447 [TBL] [Abstract][Full Text] [Related]
15. Electromagnetic impedance tomography (EMIT): a new method for impedance imaging. Levy S; Adam D; Bresler Y IEEE Trans Med Imaging; 2002 Jun; 21(6):676-87. PubMed ID: 12166865 [TBL] [Abstract][Full Text] [Related]
16. Magnetic resonance electrical impedance tomography (MREIT) for high-resolution conductivity imaging. Woo EJ; Seo JK Physiol Meas; 2008 Oct; 29(10):R1-26. PubMed ID: 18799834 [TBL] [Abstract][Full Text] [Related]
17. Neuromagnetic field strength outside the human head due to impedance changes from neuronal depolarization. Ahadzi GM; Liston AD; Bayford RH; Holder DS Physiol Meas; 2004 Feb; 25(1):365-78. PubMed ID: 15005330 [TBL] [Abstract][Full Text] [Related]
18. Finite element modeling of electrode-skin contact impedance in electrical impedance tomography. Hua P; Woo EJ; Webster JG; Tompkins WJ IEEE Trans Biomed Eng; 1993 Apr; 40(4):335-43. PubMed ID: 8375870 [TBL] [Abstract][Full Text] [Related]
19. A comparison of techniques to optimize measurement of voltage changes in electrical impedance tomography by minimizing phase shift errors. Fitzgerald AJ; Holder DS; Eadie L; Hare C; Bayford RH IEEE Trans Med Imaging; 2002 Jun; 21(6):668-75. PubMed ID: 12166864 [TBL] [Abstract][Full Text] [Related]
20. Influence of tissue resistivities on neuromagnetic fields and electric potentials studied with a finite element model of the head. Haueisen J; Ramon C; Eiselt M; Brauer H; Nowak H IEEE Trans Biomed Eng; 1997 Aug; 44(8):727-35. PubMed ID: 9254986 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]