These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 19492082)

  • 1. A sequence and structure based method to predict putative substrates, functions and regulatory networks of endo proteases.
    Venkatraman P; Balakrishnan S; Rao S; Hooda Y; Pol S
    PLoS One; 2009 May; 4(5):e5700. PubMed ID: 19492082
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A reverse binding motif that contributes to specific protease inhibition by antibodies.
    Schneider EL; Lee MS; Baharuddin A; Goetz DH; Farady CJ; Ward M; Wang CI; Craik CS
    J Mol Biol; 2012 Jan; 415(4):699-715. PubMed ID: 22154938
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PROSPER: an integrated feature-based tool for predicting protease substrate cleavage sites.
    Song J; Tan H; Perry AJ; Akutsu T; Webb GI; Whisstock JC; Pike RN
    PLoS One; 2012; 7(11):e50300. PubMed ID: 23209700
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced function annotations for Drosophila serine proteases: a case study for systematic annotation of multi-member gene families.
    Shah PK; Tripathi LP; Jensen LJ; Gahnim M; Mason C; Furlong EE; Rodrigues V; White KP; Bork P; Sowdhamini R
    Gene; 2008 Jan; 407(1-2):199-215. PubMed ID: 17996400
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteomic techniques and activity-based probes for the system-wide study of proteolysis.
    auf dem Keller U; Schilling O
    Biochimie; 2010 Nov; 92(11):1705-14. PubMed ID: 20493233
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activity-based probes as a tool for functional proteomic analysis of proteases.
    Fonović M; Bogyo M
    Expert Rev Proteomics; 2008 Oct; 5(5):721-30. PubMed ID: 18937562
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protease proteomics: revealing protease in vivo functions using systems biology approaches.
    Doucet A; Overall CM
    Mol Aspects Med; 2008 Oct; 29(5):339-58. PubMed ID: 18571712
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determinants of specificity in coagulation proteases.
    Page MJ; Macgillivray RT; Di Cera E
    J Thromb Haemost; 2005 Nov; 3(11):2401-8. PubMed ID: 16241939
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An automated protocol for modelling peptide substrates to proteases.
    Ochoa R; Magnitov M; Laskowski RA; Cossio P; Thornton JM
    BMC Bioinformatics; 2020 Dec; 21(1):586. PubMed ID: 33375946
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Profiling the Extended Cleavage Specificity of the House Dust Mite Protease Allergens Der p 1, Der p 3 and Der p 6 for the Prediction of New Cell Surface Protein Substrates.
    Jacquet A; Campisi V; Szpakowska M; Dumez ME; Galleni M; Chevigné A
    Int J Mol Sci; 2017 Jun; 18(7):. PubMed ID: 28654001
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PROSPERous: high-throughput prediction of substrate cleavage sites for 90 proteases with improved accuracy.
    Song J; Li F; Leier A; Marquez-Lago TT; Akutsu T; Haffari G; Chou KC; Webb GI; Pike RN; Hancock J
    Bioinformatics; 2018 Feb; 34(4):684-687. PubMed ID: 29069280
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Positional proteomics in the era of the human proteome project on the doorstep of precision medicine.
    Eckhard U; Marino G; Butler GS; Overall CM
    Biochimie; 2016 Mar; 122():110-8. PubMed ID: 26542287
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Substrate specifity profiling of the Aspergillus fumigatus proteolytic secretome reveals consensus motifs with predominance of Ile/Leu and Phe/Tyr.
    Watson DS; Feng X; Askew DS; Jambunathan K; Kodukula K; Galande AK
    PLoS One; 2011; 6(6):e21001. PubMed ID: 21695046
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioinformatic approaches for predicting substrates of proteases.
    Song J; Tan H; Boyd SE; Shen H; Mahmood K; Webb GI; Akutsu T; Whisstock JC; Pike RN
    J Bioinform Comput Biol; 2011 Feb; 9(1):149-78. PubMed ID: 21328711
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How to find simple and accurate rules for viral protease cleavage specificities.
    Rögnvaldsson T; Etchells TA; You L; Garwicz D; Jarman I; Lisboa PJ
    BMC Bioinformatics; 2009 May; 10():149. PubMed ID: 19445713
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biochemical Tools for Tracking Proteolysis.
    Wang L; Main K; Wang H; Julien O; Dufour A
    J Proteome Res; 2021 Dec; 20(12):5264-5279. PubMed ID: 34491759
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure and function of eukaryotic proprotein processing enzymes of the subtilisin family of serine proteases.
    Van de Ven WJ; Roebroek AJ; Van Duijnhoven HL
    Crit Rev Oncog; 1993; 4(2):115-36. PubMed ID: 8420571
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cleavage entropy as quantitative measure of protease specificity.
    Fuchs JE; von Grafenstein S; Huber RG; Margreiter MA; Spitzer GM; Wallnoefer HG; Liedl KR
    PLoS Comput Biol; 2013 Apr; 9(4):e1003007. PubMed ID: 23637583
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Current and prospective applications of non-proteinogenic amino acids in profiling of proteases substrate specificity.
    Kasperkiewicz P; Gajda AD; Drąg M
    Biol Chem; 2012 Sep; 393(9):843-51. PubMed ID: 22944686
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-resolution analysis and functional mapping of cleavage sites and substrate proteins of furin in the human proteome.
    Shiryaev SA; Chernov AV; Golubkov VS; Thomsen ER; Chudin E; Chee MS; Kozlov IA; Strongin AY; Cieplak P
    PLoS One; 2013; 8(1):e54290. PubMed ID: 23335997
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.