These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 19492082)

  • 21. Reassessing enzyme kinetics: Considering protease-as-substrate interactions in proteolytic networks.
    Ferrall-Fairbanks MC; Kieslich CA; Platt MO
    Proc Natl Acad Sci U S A; 2020 Feb; 117(6):3307-3318. PubMed ID: 31980525
    [TBL] [Abstract][Full Text] [Related]  

  • 22. PoPS: a computational tool for modeling and predicting protease specificity.
    Boyd SE; Pike RN; Rudy GB; Whisstock JC; Garcia de la Banda M
    J Bioinform Comput Biol; 2005 Jun; 3(3):551-85. PubMed ID: 16108084
    [TBL] [Abstract][Full Text] [Related]  

  • 23. PoPS: a computational tool for modeling and predicting protease specificity.
    Boyd SE; Garcia de la Banda M; Pike RN; Whisstock JC; Rudy GB
    Proc IEEE Comput Syst Bioinform Conf; 2004; ():372-81. PubMed ID: 16448030
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Papa's got a brand new tag: advances in identification of proteases and their substrates.
    Marnett AB; Craik CS
    Trends Biotechnol; 2005 Feb; 23(2):59-64. PubMed ID: 15661339
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cutting in the middleman: hidden substrates at the interface between proteases and plant development.
    Liu C; Moschou PN
    New Phytol; 2018 May; 218(3):916-922. PubMed ID: 28262953
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Global substrate specificity profiling of post-translational modifying enzymes.
    Ivry SL; Meyer NO; Winter MB; Bohn MF; Knudsen GM; O'Donoghue AJ; Craik CS
    Protein Sci; 2018 Mar; 27(3):584-594. PubMed ID: 29168252
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Profiling protease activities by dynamic proteomics workflows.
    Klingler D; Hardt M
    Proteomics; 2012 Feb; 12(4-5):587-96. PubMed ID: 22246865
    [TBL] [Abstract][Full Text] [Related]  

  • 28. From prediction to experimental validation: desmoglein 2 is a functionally relevant substrate of matriptase in epithelial cells and their reciprocal relationship is important for cell adhesion.
    Wadhawan V; Kolhe YA; Sangith N; Gautam AK; Venkatraman P
    Biochem J; 2012 Oct; 447(1):61-70. PubMed ID: 22783993
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Functional and structural characterization of Spl proteases from Staphylococcus aureus.
    Popowicz GM; Dubin G; Stec-Niemczyk J; Czarny A; Dubin A; Potempa J; Holak TA
    J Mol Biol; 2006 Apr; 358(1):270-9. PubMed ID: 16516230
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Use of protease proteomics to discover granzyme B substrates.
    Bredemeyer AJ; Townsend RR; Ley TJ
    Immunol Res; 2005; 32(1-3):143-53. PubMed ID: 16106065
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Proteomics beyond trypsin.
    Tsiatsiani L; Heck AJ
    FEBS J; 2015 Jul; 282(14):2612-26. PubMed ID: 25823410
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Deconvolving multiplexed protease signatures with substrate reduction and activity clustering.
    Zhuang Q; Holt BA; Kwong GA; Qiu P
    PLoS Comput Biol; 2019 Sep; 15(9):e1006909. PubMed ID: 31479443
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Exploiting the unique features of Zika and Dengue proteases for inhibitor design.
    Majerová T; Novotný P; Krýsová E; Konvalinka J
    Biochimie; 2019 Nov; 166():132-141. PubMed ID: 31077760
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Determinants of Macromolecular Specificity from Proteomics-Derived Peptide Substrate Data.
    Fuchs JE; Schilling O; Liedl KR
    Curr Protein Pept Sci; 2017; 18(9):905-913. PubMed ID: 27455965
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A look inside HIV resistance through retroviral protease interaction maps.
    Kontijevskis A; Prusis P; Petrovska R; Yahorava S; Mutulis F; Mutule I; Komorowski J; Wikberg JE
    PLoS Comput Biol; 2007 Mar; 3(3):e48. PubMed ID: 17352531
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Protease Inhibitors in View of Peptide Substrate Databases.
    Waldner BJ; Fuchs JE; Schauperl M; Kramer C; Liedl KR
    J Chem Inf Model; 2016 Jun; 56(6):1228-35. PubMed ID: 27247997
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identification of the substrate-binding exosites of two snake venom serine proteinases: molecular basis for the partition of two essential functions of thrombin.
    Maroun RC; Serrano SM
    J Mol Recognit; 2004; 17(1):51-61. PubMed ID: 14872537
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Residue 225 determines the Na(+)-induced allosteric regulation of catalytic activity in serine proteases.
    Dang QD; Di Cera E
    Proc Natl Acad Sci U S A; 1996 Oct; 93(20):10653-6. PubMed ID: 8855234
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Expanding Repertoire of Plant Positive-Strand RNA Virus Proteases.
    Mann KS; Sanfaçon H
    Viruses; 2019 Jan; 11(1):. PubMed ID: 30650571
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Phytaspases: aspartate-specific proteases involved in plant cell death].
    Chichkova NV; Galiullina RA; Beloshistov RE; Balakireva AV; Vartapetian AB
    Bioorg Khim; 2014; 40(6):658-64. PubMed ID: 25895361
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.