BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 19492786)

  • 1. Inverse gas chromatography of as-received and modified carbon nanotubes.
    Menzel R; Lee A; Bismarck A; Shaffer MS
    Langmuir; 2009 Jul; 25(14):8340-8. PubMed ID: 19492786
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adsorption of volatile organic compounds onto carbon nanotubes, carbon nanofibers, and high-surface-area graphites.
    Díaz E; Ordóñez S; Vega A
    J Colloid Interface Sci; 2007 Jan; 305(1):7-16. PubMed ID: 17046777
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sonochemical oxidation of multiwalled carbon nanotubes.
    Xing Y; Li L; Chusuei CC; Hull RV
    Langmuir; 2005 Apr; 21(9):4185-90. PubMed ID: 15835993
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of graphitization on the wettability and electrical conductivity of CVD-carbon nanotubes and films.
    Mattia D; Rossi MP; Kim BM; Korneva G; Bau HH; Gogotsi Y
    J Phys Chem B; 2006 May; 110(20):9850-5. PubMed ID: 16706438
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct growth of aligned multiwalled carbon nanotubes on treated stainless steel substrates.
    Masarapu C; Wei B
    Langmuir; 2007 Aug; 23(17):9046-9. PubMed ID: 17637000
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of carbon nanotubes on diamond-like carbon by the hot filament plasma-enhanced chemical vapor deposition method.
    Choi EC; Park YS; Hong B
    Micron; 2009; 40(5-6):612-6. PubMed ID: 19318258
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nitrogen adsorption characterization of aligned multiwalled carbon nanotubes and their acid modification.
    Li Z; Pan Z; Dai S
    J Colloid Interface Sci; 2004 Sep; 277(1):35-42. PubMed ID: 15276035
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of growing CNTs onto bamboo charcoals on adsorption of copper ions in aqueous solution.
    Zhang J; Huang ZH; Lv R; Yang QH; Kang F
    Langmuir; 2009 Jan; 25(1):269-74. PubMed ID: 19053622
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoscale zirconia as a nonmetallic catalyst for graphitization of carbon and growth of single- and multiwall carbon nanotubes.
    Steiner SA; Baumann TF; Bayer BC; Blume R; Worsley MA; MoberlyChan WJ; Shaw EL; Schlögl R; Hart AJ; Hofmann S; Wardle BL
    J Am Chem Soc; 2009 Sep; 131(34):12144-54. PubMed ID: 19663436
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanocomposite microstructures with tunable mechanical and chemical properties.
    Tawfick S; Deng X; Hart AJ; Lahann J
    Phys Chem Chem Phys; 2010 May; 12(17):4446-51. PubMed ID: 20407718
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of surface heterogeneity of D-mannitol by sessile drop contact angle and finite concentration inverse gas chromatography.
    Ho R; Hinder SJ; Watts JF; Dilworth SE; Williams DR; Heng JY
    Int J Pharm; 2010 Mar; 387(1-2):79-86. PubMed ID: 20006691
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of surface species in chemical vapor deposited carbon nanotubes.
    Lysaght AC; Chiu WK
    Nanotechnology; 2009 Mar; 20(11):115605. PubMed ID: 19420445
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Covalent layer-by-layer functionalization of multiwalled carbon nanotubes by click chemistry.
    Zhang Y; He H; Gao C; Wu J
    Langmuir; 2009 May; 25(10):5814-24. PubMed ID: 19374339
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface properties of zinc oxide nanoparticles studied by inverse gas chromatography.
    Przybyszewska M; Krzywania A; Zaborski M; Szynkowska MI
    J Chromatogr A; 2009 Jul; 1216(27):5284-91. PubMed ID: 19464015
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of the dispersive component of the surface energy of active carbons as determined by inverse gas chromatography at zero surface coverage.
    Pérez-Mendoza M; Almazán-Almazán MC; Méndez-Liñán L; Domingo-García M; López-Garzón FJ
    J Chromatogr A; 2008 Dec; 1214(1-2):121-7. PubMed ID: 18995860
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electronic structure and field emission of multiwalled carbon nanotubes depending on growth temperature.
    Yoon SW; Kim SY; Park J; Park CJ; Lee CJ
    J Phys Chem B; 2005 Nov; 109(43):20403-6. PubMed ID: 16853640
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A general route to prepare one- and three-dimensional carbon nanotube/metal nanoparticle composite nanostructures.
    Hu X; Wang T; Wang L; Guo S; Dong S
    Langmuir; 2007 May; 23(11):6352-7. PubMed ID: 17408292
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Towards an ultrasensitive method for the determination of metal impurities in carbon nanotubes.
    Kolodiazhnyi T; Pumera M
    Small; 2008 Sep; 4(9):1476-84. PubMed ID: 18680097
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Attachment of carbon nanotubes to atomic force microscope probes.
    Gibson CT; Carnally S; Roberts CJ
    Ultramicroscopy; 2007 Oct; 107(10-11):1118-22. PubMed ID: 17644251
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design and characterization of three-dimensional carbon nanotube foams.
    Kaur S; Ajayan PM; Kane RS
    J Phys Chem B; 2006 Oct; 110(42):21377-80. PubMed ID: 17048968
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.