BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 19492814)

  • 1. Probing protein folding using site-specifically encoded unnatural amino acids as FRET donors with tryptophan.
    Miyake-Stoner SJ; Miller AM; Hammill JT; Peeler JC; Hess KR; Mehl RA; Brewer SH
    Biochemistry; 2009 Jun; 48(25):5953-62. PubMed ID: 19492814
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface expansion is independent of and occurs faster than core solvation during the unfolding of barstar.
    Sridevi K; Udgaonkar JB
    Biochemistry; 2003 Feb; 42(6):1551-63. PubMed ID: 12578368
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ligand dependent intra and inter subunit communication in human tryptophanyl tRNA synthetase as deduced from the dynamics of structure networks.
    Hansia P; Ghosh A; Vishveshwara S
    Mol Biosyst; 2009 Dec; 5(12):1860-72. PubMed ID: 19763332
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phenylalanyl-tRNA synthetase contains a dispensable RNA-binding domain that contributes to the editing of noncognate aminoacyl-tRNA.
    Roy H; Ibba M
    Biochemistry; 2006 Aug; 45(30):9156-62. PubMed ID: 16866361
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure and activity of an aminoacyl-tRNA synthetase that charges tRNA with nitro-tryptophan.
    Buddha MR; Crane BR
    Nat Struct Mol Biol; 2005 Mar; 12(3):274-5. PubMed ID: 15723076
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Binding regions of outer membrane protein A in complexes with the periplasmic chaperone Skp. A site-directed fluorescence study.
    Qu J; Behrens-Kneip S; Holst O; Kleinschmidt JH
    Biochemistry; 2009 Jun; 48(22):4926-36. PubMed ID: 19382746
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluorescence based structural analysis of tryptophan analogue-AMP formation in single tryptophan mutants of Bacillus stearothermophilus tryptophanyl-tRNA synthetase.
    Acchione M; Guillemette JG; Twine SM; Hogue CW; Rajendran B; Szabo AG
    Biochemistry; 2003 Dec; 42(50):14994-5002. PubMed ID: 14674776
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic incorporation of unnatural amino acids into proteins in mammalian cells.
    Liu W; Brock A; Chen S; Chen S; Schultz PG
    Nat Methods; 2007 Mar; 4(3):239-44. PubMed ID: 17322890
    [TBL] [Abstract][Full Text] [Related]  

  • 9. FRET analysis of protein conformational change through position-specific incorporation of fluorescent amino acids.
    Kajihara D; Abe R; Iijima I; Komiyama C; Sisido M; Hohsaka T
    Nat Methods; 2006 Nov; 3(11):923-9. PubMed ID: 17060916
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interpretation of p-cyanophenylalanine fluorescence in proteins in terms of solvent exposure and contribution of side-chain quenchers: a combined fluorescence, IR and molecular dynamics study.
    Taskent-Sezgin H; Chung J; Patsalo V; Miyake-Stoner SJ; Miller AM; Brewer SH; Mehl RA; Green DF; Raleigh DP; Carrico I
    Biochemistry; 2009 Sep; 48(38):9040-6. PubMed ID: 19658436
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Docking of tryptophanyl [corrected tryptophan] analogs to trytophanyl-tRNA synthetase: implications for non-canonical amino acid incorporations.
    Azim MK; Budisa N
    Biol Chem; 2008 Sep; 389(9):1173-82. PubMed ID: 18713004
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The site-specific incorporation of p-iodo-L-phenylalanine into proteins for structure determination.
    Xie J; Wang L; Wu N; Brock A; Spraggon G; Schultz PG
    Nat Biotechnol; 2004 Oct; 22(10):1297-301. PubMed ID: 15378068
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An exposed cysteine residue of human angiostatic mini tryptophanyl-tRNA synthetase.
    Wakasugi K
    Biochemistry; 2010 Apr; 49(14):3156-60. PubMed ID: 20225827
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dependence of the size of the initially collapsed form during the refolding of barstar on denaturant concentration: evidence for a continuous transition.
    Sinha KK; Udgaonkar JB
    J Mol Biol; 2005 Oct; 353(3):704-18. PubMed ID: 16188274
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Volume and free energy of folding for troponin C C-domain: linkage to ion binding and N-domain interaction.
    Rocha CB; Suarez MC; Yu A; Ballard L; Sorenson MM; Foguel D; Silva JL
    Biochemistry; 2008 Apr; 47(17):5047-58. PubMed ID: 18393534
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural basis for discrimination of L-phenylalanine from L-tyrosine by phenylalanyl-tRNA synthetase.
    Kotik-Kogan O; Moor N; Tworowski D; Safro M
    Structure; 2005 Dec; 13(12):1799-807. PubMed ID: 16338408
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Symmetrical refolding of protein domains and subunits: example of the dimeric two-domain 3-isopropylmalate dehydrogenases.
    Gráczer E; Varga A; Melnik B; Semisotnov G; Závodszky P; Vas M
    Biochemistry; 2009 Feb; 48(5):1123-34. PubMed ID: 19154118
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two-dimensional fluorescence resonance energy transfer as a probe for protein folding: a theoretical study.
    Ting CL; Makarov DE
    J Chem Phys; 2008 Mar; 128(11):115102. PubMed ID: 18361617
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitochondrial aminoacyl-tRNA synthetase single-nucleotide polymorphisms that lead to defects in refolding but not aminoacylation.
    Banerjee R; Reynolds NM; Yadavalli SS; Rice C; Roy H; Banerjee P; Alexander RW; Ibba M
    J Mol Biol; 2011 Jul; 410(2):280-93. PubMed ID: 21601574
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dissecting the non-specific and specific components of the initial folding reaction of barstar by multi-site FRET measurements.
    Sinha KK; Udgaonkar JB
    J Mol Biol; 2007 Jul; 370(2):385-405. PubMed ID: 17512542
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.