These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 19492963)

  • 41. Disruption of the gene (spo0A) encoding sporulation transcription factor blocks endospore formation and enterotoxin production in enterotoxigenic Clostridium perfringens type A.
    Huang IH; Waters M; Grau RR; Sarker MR
    FEMS Microbiol Lett; 2004 Apr; 233(2):233-40. PubMed ID: 15063491
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Transcriptional Profile during Deoxycholate-Induced Sporulation in a Clostridium perfringens Isolate Causing Foodborne Illness.
    Yasugi M; Okuzaki D; Kuwana R; Takamatsu H; Fujita M; Sarker MR; Miyake M
    Appl Environ Microbiol; 2016 May; 82(10):2929-2942. PubMed ID: 26969700
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Clostridium perfringens and foodborne infections.
    Brynestad S; Granum PE
    Int J Food Microbiol; 2002 Apr; 74(3):195-202. PubMed ID: 11981970
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Influence of peptone source on sporulation of Clostridium perfringens type A.
    Hsieh PY; Labbe R
    J Food Prot; 2007 Jul; 70(7):1730-4. PubMed ID: 17685351
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Production of small, acid-soluble spore proteins in Clostridium perfringens nonfoodborne gastrointestinal disease isolates.
    Raju D; Sarker MR
    Can J Microbiol; 2007 Apr; 53(4):514-8. PubMed ID: 17612607
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [Sporulation and related problems in Clostridium perfringens. Physiopathological implications for food poisoning].
    Lapointe JR; Fredette V
    Union Med Can; 1975 Feb; 104(2):192-207. PubMed ID: 169617
    [No Abstract]   [Full Text] [Related]  

  • 47. Sporulation and enterotoxin production by Clostridium perfringens type A under conditions of controlled pH and temperature.
    Labbe RG; Duncan CL
    Can J Microbiol; 1974 Nov; 20(11):1493-501. PubMed ID: 4373153
    [No Abstract]   [Full Text] [Related]  

  • 48. Raffinose increases sporulation and enterotoxin production by Clostridium perfringens type A.
    Labbe RG; Rey DK
    Appl Environ Microbiol; 1979 Jun; 37(6):1196-200. PubMed ID: 225991
    [TBL] [Abstract][Full Text] [Related]  

  • 49. An enhanced green fluorescence protein (EGFP)-based reporter assay for quantitative detection of sporulation in Clostridium perfringens SM101.
    Wakabayashi Y; Nariya H; Yasugi M; Kuwahara T; Sarker MR; Miyake M
    Int J Food Microbiol; 2019 Feb; 291():144-150. PubMed ID: 30500691
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Pathogenesis of Hobbs' heat-sensitive spore forming Clostridium perfringens type A strain.
    Chakrabarty AK; Narayan KG
    Microbiol Immunol; 1979; 23(4):213-21. PubMed ID: 224284
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Comparative effects of osmotic, sodium nitrite-induced, and pH-induced stress on growth and survival of Clostridium perfringens type A isolates carrying chromosomal or plasmid-borne enterotoxin genes.
    Li J; McClane BA
    Appl Environ Microbiol; 2006 Dec; 72(12):7620-5. PubMed ID: 17041163
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effects of sporulation conditions on the growth, germination, and resistance of Clostridium perfringens spores.
    Liang D; Cui X; Li M; Zhu Y; Zhao L; Liu S; Zhao G; Wang N; Ma Y; Xu L
    Int J Food Microbiol; 2023 Jul; 396():110200. PubMed ID: 37119648
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Factors contributing to heat resistance of Clostridium perfringens endospores.
    Orsburn B; Melville SB; Popham DL
    Appl Environ Microbiol; 2008 Jun; 74(11):3328-35. PubMed ID: 18378644
    [TBL] [Abstract][Full Text] [Related]  

  • 54. EtfA catalyses the formation of dipicolinic acid in Clostridium perfringens.
    Orsburn BC; Melville SB; Popham DL
    Mol Microbiol; 2010 Jan; 75(1):178-86. PubMed ID: 19968785
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Clostridium perfringens: Comparative effects of heat and osmotic stress on non-enterotoxigenic and enterotoxigenic strains.
    Abbona CC; Stagnitta PV
    Anaerobe; 2016 Jun; 39():105-13. PubMed ID: 27012900
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Interactions between Clostridium perfringens spores and Raw 264.7 macrophages.
    Paredes-Sabja D; Sarker MR
    Anaerobe; 2012 Feb; 18(1):148-56. PubMed ID: 22209938
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Evidence for stable messenger ribonucleic acid during sporulation and enterotoxin synthesis by Clostridium perfringens type A.
    Labbe RG; Duncan CL
    J Bacteriol; 1977 Feb; 129(2):843-9. PubMed ID: 190209
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Survival and growth of enterotoxin-positive and enterotoxin-negative Clostridium perfringens in laboratory media.
    Miwa N; Masuda T; Kwamura A; Terai K; Akiyama M
    Int J Food Microbiol; 2002 Feb; 72(3):233-8. PubMed ID: 11845822
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Roles of DacB and spm proteins in clostridium perfringens spore resistance to moist heat, chemicals, and UV radiation.
    Paredes-Sabja D; Sarker N; Setlow B; Setlow P; Sarker MR
    Appl Environ Microbiol; 2008 Jun; 74(12):3730-8. PubMed ID: 18441110
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Alteration in sporulation, enterotoxin production, and protein synthesis by Clostridium perfringens type A following heat shock.
    Heredia NL; Labbé RG; García-Alvarado JS
    J Food Prot; 1998 Sep; 61(9):1143-7. PubMed ID: 9766065
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.