These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 19492982)

  • 1. Incorporating duplicate genotype data into linear trend tests of genetic association: methods and cost-effectiveness.
    Borchers B; Brown M; McLellan B; Bekmetjev A; Tintle NL
    Stat Appl Genet Mol Biol; 2009; 8(1):Article24. PubMed ID: 19492982
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The cost effectiveness of duplicate genotyping for testing genetic association.
    Tintle N; Gordon D; Van Bruggen D; Finch S
    Ann Hum Genet; 2009 May; 73(Pt 3):370-8. PubMed ID: 19344449
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A cost-effective statistical method to correct for differential genotype misclassification when performing case-control genetic association.
    Londono D; Haynes C; De La Vega FM; Finch SJ; Gordon D
    Hum Hered; 2010; 70(2):102-8. PubMed ID: 20606457
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using public control genotype data to increase power and decrease cost of case-control genetic association studies.
    Ho LA; Lange EM
    Hum Genet; 2010 Dec; 128(6):597-608. PubMed ID: 20821337
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design of association studies with pooled or un-pooled next-generation sequencing data.
    Kim SY; Li Y; Guo Y; Li R; Holmkvist J; Hansen T; Pedersen O; Wang J; Nielsen R
    Genet Epidemiol; 2010 Jul; 34(5):479-91. PubMed ID: 20552648
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Missing call bias in high-throughput genotyping.
    Fu W; Wang Y; Wang Y; Li R; Lin R; Jin L
    BMC Genomics; 2009 Mar; 10():106. PubMed ID: 19284636
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimal DNA pooling-based two-stage designs in case-control association studies.
    Zhao Y; Wang S
    Hum Hered; 2009; 67(1):46-56. PubMed ID: 18931509
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using duplicate genotyped data in genetic analyses: testing association and estimating error rates.
    Tintle NL; Gordon D; McMahon FJ; Finch SJ
    Stat Appl Genet Mol Biol; 2007; 6():Article4. PubMed ID: 17402919
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Designing genome-wide association studies: sample size, power, imputation, and the choice of genotyping chip.
    Spencer CC; Su Z; Donnelly P; Marchini J
    PLoS Genet; 2009 May; 5(5):e1000477. PubMed ID: 19492015
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A triple combination strategy corrects population stratification bias and saves genotyping cost.
    Huang HY; Lee WC
    J Clin Epidemiol; 2011 May; 64(5):517-24. PubMed ID: 21074967
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Power and sample size calculations for case-control genetic association tests when errors are present: application to single nucleotide polymorphisms.
    Gordon D; Finch SJ; Nothnagel M; Ott J
    Hum Hered; 2002; 54(1):22-33. PubMed ID: 12446984
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Association mapping in outbred populations: power and efficiency when genotyping parents and phenotyping progeny.
    Chenoweth SF; Visscher PM
    Genetics; 2009 Feb; 181(2):755-65. PubMed ID: 19087954
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A permutation test for oligoset DNA pooling studies.
    Huang HY; Lin JH; Lee WC
    PLoS One; 2015; 10(3):e0119096. PubMed ID: 25763822
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimal robust two-stage designs for genome-wide association studies.
    Nguyen TT; Pahl R; Schäfer H
    Ann Hum Genet; 2009 Nov; 73(Pt 6):638-51. PubMed ID: 19839987
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of SNP genotyping errors on the power of the Cochran-Armitage linear trend test for case/control association studies.
    Ahn K; Haynes C; Kim W; Fleur RS; Gordon D; Finch SJ
    Ann Hum Genet; 2007 Mar; 71(Pt 2):249-61. PubMed ID: 17096677
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A unifying framework for robust association testing, estimation, and genetic model selection using the generalized linear model.
    Loley C; König IR; Hothorn L; Ziegler A
    Eur J Hum Genet; 2013 Dec; 21(12):1442-8. PubMed ID: 23572026
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Incorporation of genetic model parameters for cost-effective designs of genetic association studies using DNA pooling.
    Ji F; Finch SJ; Haynes C; Mendell NR; Gordon D
    BMC Genomics; 2007 Jul; 8():238. PubMed ID: 17634103
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Repeated measurement sampling in genetic association analysis with genotyping errors.
    Lai R; Zhang H; Yang Y
    Genet Epidemiol; 2007 Feb; 31(2):143-53. PubMed ID: 17187401
    [TBL] [Abstract][Full Text] [Related]  

  • 19. What SNP genotyping errors are most costly for genetic association studies?
    Kang SJ; Gordon D; Finch SJ
    Genet Epidemiol; 2004 Feb; 26(2):132-41. PubMed ID: 14748013
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sequencing and imputation in GWAS: Cost-effective strategies to increase power and genomic coverage across diverse populations.
    Quick C; Anugu P; Musani S; Weiss ST; Burchard EG; White MJ; Keys KL; Cucca F; Sidore C; Boehnke M; Fuchsberger C
    Genet Epidemiol; 2020 Sep; 44(6):537-549. PubMed ID: 32519380
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.