These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
224 related articles for article (PubMed ID: 19493158)
1. On the mechanism of oleate transport across human brain microvessel endothelial cells. Mitchell RW; Edmundson CL; Miller DW; Hatch GM J Neurochem; 2009 Aug; 110(3):1049-57. PubMed ID: 19493158 [TBL] [Abstract][Full Text] [Related]
2. Fatty acid transport protein expression in human brain and potential role in fatty acid transport across human brain microvessel endothelial cells. Mitchell RW; On NH; Del Bigio MR; Miller DW; Hatch GM J Neurochem; 2011 May; 117(4):735-46. PubMed ID: 21395585 [TBL] [Abstract][Full Text] [Related]
3. Exogenous arachidonic acid mediates permeability of human brain microvessel endothelial cells through prostaglandin E2 activation of EP3 and EP4 receptors. Dalvi S; Nguyen HH; On N; Mitchell RW; Aukema HM; Miller DW; Hatch GM J Neurochem; 2015 Dec; 135(5):867-79. PubMed ID: 25865705 [TBL] [Abstract][Full Text] [Related]
4. Adhesion and migration of polymorphonuclear leukocytes across human brain microvessel endothelial cells are differentially regulated by endothelial cell adhesion molecules and modulate monolayer permeability. Wong D; Prameya R; Dorovini-Zis K J Neuroimmunol; 2007 Mar; 184(1-2):136-48. PubMed ID: 17291598 [TBL] [Abstract][Full Text] [Related]
5. Fatty acid transport into the brain: of fatty acid fables and lipid tails. Mitchell RW; Hatch GM Prostaglandins Leukot Essent Fatty Acids; 2011 Nov; 85(5):293-302. PubMed ID: 21816594 [TBL] [Abstract][Full Text] [Related]
6. n-3 Fatty acids modulate brain glucose transport in endothelial cells of the blood-brain barrier. Pifferi F; Jouin M; Alessandri JM; Haedke U; Roux F; Perrière N; Denis I; Lavialle M; Guesnet P Prostaglandins Leukot Essent Fatty Acids; 2007; 77(5-6):279-86. PubMed ID: 18042368 [TBL] [Abstract][Full Text] [Related]
7. Energetics underlying the process of long-chain fatty acid transport. Azizan A; Sherin D; DiRusso CC; Black PN Arch Biochem Biophys; 1999 May; 365(2):299-306. PubMed ID: 10328825 [TBL] [Abstract][Full Text] [Related]
8. In vitro models for the blood-brain barrier. Garberg P; Ball M; Borg N; Cecchelli R; Fenart L; Hurst RD; Lindmark T; Mabondzo A; Nilsson JE; Raub TJ; Stanimirovic D; Terasaki T; Oberg JO; Osterberg T Toxicol In Vitro; 2005 Apr; 19(3):299-334. PubMed ID: 15713540 [TBL] [Abstract][Full Text] [Related]
9. Effect of electromagnetic field on endocytosis of cationic solid lipid nanoparticles by human brain-microvascular endothelial cells. Kuo YC; Chen HH J Drug Target; 2010 Jul; 18(6):447-56. PubMed ID: 20528098 [TBL] [Abstract][Full Text] [Related]
10. Chemical modification of paclitaxel (Taxol) reduces P-glycoprotein interactions and increases permeation across the blood-brain barrier in vitro and in situ. Rice A; Liu Y; Michaelis ML; Himes RH; Georg GI; Audus KL J Med Chem; 2005 Feb; 48(3):832-8. PubMed ID: 15689167 [TBL] [Abstract][Full Text] [Related]
11. Escherichia coli outer membrane protein A adheres to human brain microvascular endothelial cells. Shin S; Lu G; Cai M; Kim KS Biochem Biophys Res Commun; 2005 May; 330(4):1199-204. PubMed ID: 15823570 [TBL] [Abstract][Full Text] [Related]
12. Transcellular transport of CCL2 across brain microvascular endothelial cells. Ge S; Song L; Serwanski DR; Kuziel WA; Pachter JS J Neurochem; 2008 Mar; 104(5):1219-32. PubMed ID: 18289346 [TBL] [Abstract][Full Text] [Related]
13. Albumin-binding proteins function in the receptor-mediated binding and transcytosis of albumin across cultured endothelial cells. Antohe F; Dobrila L; Heltianu C; Simionescu N; Simionescu M Eur J Cell Biol; 1993 Apr; 60(2):268-75. PubMed ID: 8330624 [TBL] [Abstract][Full Text] [Related]
14. Human immunodeficiency virus type 1 transport across the in vitro mouse brain endothelial cell monolayer. Nakaoke R; Ryerse JS; Niwa M; Banks WA Exp Neurol; 2005 May; 193(1):101-9. PubMed ID: 15817268 [TBL] [Abstract][Full Text] [Related]
15. Specific uptake of succinylated proteins via a scavenger receptor-mediated mechanism in cultured brain microvessel endothelial cells. Tokuda H; Masuda S; Takakura Y; Sezaki H; Hashida M Biochem Biophys Res Commun; 1993 Oct; 196(1):18-24. PubMed ID: 8216290 [TBL] [Abstract][Full Text] [Related]
16. Transport of valproate at intestinal epithelial (Caco-2) and brain endothelial (RBE4) cells: mechanism and substrate specificity. Fischer W; Praetor K; Metzner L; Neubert RH; Brandsch M Eur J Pharm Biopharm; 2008 Oct; 70(2):486-92. PubMed ID: 18577448 [TBL] [Abstract][Full Text] [Related]
17. Reduction in cardiolipin decreases mitochondrial spare respiratory capacity and increases glucose transport into and across human brain cerebral microvascular endothelial cells. Nguyen HM; Mejia EM; Chang W; Wang Y; Watson E; On N; Miller DW; Hatch GM J Neurochem; 2016 Oct; 139(1):68-80. PubMed ID: 27470495 [TBL] [Abstract][Full Text] [Related]
18. Manganese transport by rat brain endothelial (RBE4) cell-based transwell model in the presence of astrocyte conditioned media. Fitsanakis VA; Piccola G; Aschner JL; Aschner M J Neurosci Res; 2005 Jul; 81(2):235-43. PubMed ID: 15948148 [TBL] [Abstract][Full Text] [Related]
19. Transport of the beta-lactam antibiotic benzylpenicillin and the dipeptide glycylsarcosine by brain capillary endothelial cells in vitro. Török M; Huwyler J; Drewe J; Gutmann H; Fricker G Drug Metab Dispos; 1998 Nov; 26(11):1144-8. PubMed ID: 9806958 [TBL] [Abstract][Full Text] [Related]
20. Regulation of CXCL12 and CXCR4 expression by human brain endothelial cells and their role in CD4+ and CD8+ T cell adhesion and transendothelial migration. Liu KK; Dorovini-Zis K J Neuroimmunol; 2009 Oct; 215(1-2):49-64. PubMed ID: 19765831 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]