BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 19493341)

  • 1. Modelling substrate specificity and enantioselectivity for lipases and esterases by substrate-imprinted docking.
    Juhl PB; Trodler P; Tyagi S; Pleiss J
    BMC Struct Biol; 2009 Jun; 9():39. PubMed ID: 19493341
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biochemical profiling in silico--predicting substrate specificities of large enzyme families.
    Tyagi S; Pleiss J
    J Biotechnol; 2006 Jun; 124(1):108-16. PubMed ID: 16519956
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of the enantioselectivity of lipases and esterases by molecular docking method with modified force field parameters.
    Ji L; Xiaoling T; Hongwei Y
    Biotechnol Bioeng; 2010 Mar; 105(4):687-96. PubMed ID: 19891004
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural insights into the lipase/esterase behavior in the Candida rugosa lipases family: crystal structure of the lipase 2 isoenzyme at 1.97A resolution.
    Mancheño JM; Pernas MA; Martínez MJ; Ochoa B; Rúa ML; Hermoso JA
    J Mol Biol; 2003 Oct; 332(5):1059-69. PubMed ID: 14499609
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computer simulations of enantioselective ester hydrolyses catalyzed by Pseudomonas cepacia lipase.
    Tafi A; van Almsick A; Corelli F; Crusco M; Laumen KE; Schneider MP; Botta M
    J Org Chem; 2000 Jun; 65(12):3659-65. PubMed ID: 10864749
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemical modification of lipases with various hydrophobic groups improves their enantioselectivity in hydrolytic reactions.
    Ueji S; Uedal A; Tanaka H; Watanabe K; Okamoto T; Ebara Y
    Biotechnol Lett; 2003 Jan; 25(1):83-7. PubMed ID: 12882312
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Implication of substrate-assisted catalysis on improving lipase activity or enantioselectivity in organic solvents.
    Tsai SW; Chen CC; Yang HS; Ng IS; Chen TL
    Biochim Biophys Acta; 2006 Aug; 1764(8):1424-8. PubMed ID: 16919508
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anatomy of lipase binding sites: the scissile fatty acid binding site.
    Pleiss J; Fischer M; Schmid RD
    Chem Phys Lipids; 1998 Jun; 93(1-2):67-80. PubMed ID: 9720251
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enantioselective recognition mechanism of secondary alcohol by surfactant-coated lipases in nonaqueous media.
    Kamiya N; Kasagi H; Inoue M; Kusunoki K; Goto M
    Biotechnol Bioeng; 1999 Oct; 65(2):227-32. PubMed ID: 10458745
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A structure-controlled investigation of lipase enantioselectivity by a path-planning approach.
    Guieysse D; Cortés J; Puech-Guenot S; Barbe S; Lafaquière V; Monsan P; Siméon T; André I; Remaud-Siméon M
    Chembiochem; 2008 May; 9(8):1308-17. PubMed ID: 18418817
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stereoselectivity of Pseudomonas cepacia lipase toward secondary alcohols: a quantitative model.
    Schulz T; Pleiss J; Schmid RD
    Protein Sci; 2000 Jun; 9(6):1053-62. PubMed ID: 10892799
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of enantioselectivity of lipase catalyzed kinetic resolution using umbrella sampling.
    Mathpati AC; Bhanage BM
    J Biotechnol; 2018 Oct; 283():70-80. PubMed ID: 30031094
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A quantitative model for predicting enzyme enantioselectivity: application to Burkholderia cepacia lipase and 3-(aryloxy)-1,2-propanediol derivatives.
    Tomić S; Kojić-Prodić B
    J Mol Graph Model; 2002 Dec; 21(3):241-52. PubMed ID: 12463642
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Substrate specificity of lipases in alkoxycarbonylation reaction: QSAR model development and experimental validation.
    Chandrasekaran SM; Bhartiya S; Wangikar PP
    Biotechnol Bioeng; 2006 Jun; 94(3):554-64. PubMed ID: 16528758
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The crystal structure of a triacylglycerol lipase from Pseudomonas cepacia reveals a highly open conformation in the absence of a bound inhibitor.
    Kim KK; Song HK; Shin DH; Hwang KY; Suh SW
    Structure; 1997 Feb; 5(2):173-85. PubMed ID: 9032073
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Semiautomated Structure-Based Method To Predict Substrates of Enzymes via Molecular Docking: A Case Study with Candida antarctica Lipase B.
    Yao Z; Zhang L; Gao B; Cui D; Wang F; He X; Zhang JZ; Wei D
    J Chem Inf Model; 2016 Oct; 56(10):1979-1994. PubMed ID: 27529495
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probing the substrate specificity for lipases. II. Kinetic and modeling studies on the molecular recognition of 2-arylpropionic esters by Candida rugosa and Rhizomucor miehei lipases.
    Botta M; Cernia E; Corelli F; Manetti F; Soro S
    Biochim Biophys Acta; 1997 Feb; 1337(2):302-10. PubMed ID: 9048908
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure and conformational flexibility of Candida rugosa lipase.
    Cygler M; Schrag JD
    Biochim Biophys Acta; 1999 Nov; 1441(2-3):205-14. PubMed ID: 10570248
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Methods to increase enantioselectivity of lipases and esterases.
    Bornscheuer UT
    Curr Opin Biotechnol; 2002 Dec; 13(6):543-7. PubMed ID: 12482512
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inverting enantioselectivity of Burkholderia cepacia KWI-56 lipase by combinatorial mutation and high-throughput screening using single-molecule PCR and in vitro expression.
    Koga Y; Kato K; Nakano H; Yamane T
    J Mol Biol; 2003 Aug; 331(3):585-92. PubMed ID: 12899830
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.