These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 1949343)

  • 1. Transport and harvesting of suspended particles using modulated ultrasound.
    Whitworth G; Grundy MA; Coakley WT
    Ultrasonics; 1991 Nov; 29(6):439-44. PubMed ID: 1949343
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrasonic manipulation of particles and cells. Ultrasonic separation of cells.
    Coakley WT; Whitworth G; Grundy MA; Gould RK; Allman R
    Bioseparation; 1994 Apr; 4(2):73-83. PubMed ID: 7765041
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potential-well model in acoustic tweezers.
    Kang ST; Yeh CK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Jun; 57(6):1451-9. PubMed ID: 20529720
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental study on inter-particle acoustic forces.
    Garcia-Sabaté A; Castro A; Hoyos M; González-Cinca R
    J Acoust Soc Am; 2014 Mar; 135(3):1056-63. PubMed ID: 24606249
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cavitation bubble-driven cell and particle behavior in an ultrasound standing wave.
    Kuznetsova LA; Khanna S; Amso NN; Coakley WT; Doinikov AA
    J Acoust Soc Am; 2005 Jan; 117(1):104-12. PubMed ID: 15704403
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional mid-air acoustic manipulation by ultrasonic phased arrays.
    Ochiai Y; Hoshi T; Rekimoto J
    PLoS One; 2014; 9(5):e97590. PubMed ID: 24849371
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acoustic control of suspended particles in micro fluidic chips.
    Nilsson A; Petersson F; Jönsson H; Laurell T
    Lab Chip; 2004 Apr; 4(2):131-5. PubMed ID: 15052353
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microparticle manipulation in millimetre scale ultrasonic standing wave chambers.
    Hawkes JJ; Barrow D; Coakley WT
    Ultrasonics; 1998 Aug; 36(9):925-31. PubMed ID: 9735860
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Observation of yeast cell movement and aggregation in a small-scale MHz-ultrasonic standing wave field.
    Spengler JF; Jekel M; Christensen KT; Adrian RJ; Hawkes JJ; Coakley WT
    Bioseparation; 2000; 9(6):329-41. PubMed ID: 11518236
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Manipulation of microparticles using phase-controllable ultrasonic standing waves.
    Courtney CR; Ong CK; Drinkwater BW; Wilcox PD; Demore C; Cochran S; Glynne-Jones P; Hill M
    J Acoust Soc Am; 2010 Oct; 128(4):EL195-9. PubMed ID: 20968325
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Towards the automation of micron-sized particle handling by use of acoustic manipulation assisted by microfluidics.
    Oberti S; Neild A; Möller D; Dual J
    Ultrasonics; 2008 Nov; 48(6-7):529-36. PubMed ID: 18649908
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stirring and mixing of liquids using acoustic radiation force.
    Sarvazyan A; Ostrovsky L
    J Acoust Soc Am; 2009 Jun; 125(6):3548-54. PubMed ID: 19507936
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kilohertz-Frequency Rotation of Acoustically Levitated Particles.
    Rothlisberger M; Schuck M; Kolar JW
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Apr; 69(4):1528-1534. PubMed ID: 35120003
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Seed particle-enabled acoustic trapping of bacteria and nanoparticles in continuous flow systems.
    Hammarström B; Laurell T; Nilsson J
    Lab Chip; 2012 Nov; 12(21):4296-304. PubMed ID: 22955667
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-contact acoustic trapping in circular cross-section glass capillaries: a numerical study.
    Gralinski I; Alan T; Neild A
    J Acoust Soc Am; 2012 Nov; 132(5):2978-87. PubMed ID: 23145585
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fast prediction of pulsed nonlinear acoustic fields from clinically relevant sources using time-averaged wave envelope approach: comparison of numerical simulations and experimental results.
    Wójcik J; Kujawska T; Nowicki A; Lewin PA
    Ultrasonics; 2008 Dec; 48(8):707-15. PubMed ID: 18474387
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of acoustic feedback to target detection in a waveguide: experimental demonstration at the ultrasonic scale.
    Roux P; Marandet C; La Rizza P; Kuperman WA
    J Acoust Soc Am; 2011 Jul; 130(1):13-9. PubMed ID: 21786873
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface acoustic wave concentration of particle and bioparticle suspensions.
    Li H; Friend JR; Yeo LY
    Biomed Microdevices; 2007 Oct; 9(5):647-56. PubMed ID: 17530412
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Separation of 300 and 100 nm Particles in Fabry-Perot Acoustofluidic Resonators.
    Sehgal P; Kirby BJ
    Anal Chem; 2017 Nov; 89(22):12192-12200. PubMed ID: 29039191
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative analysis of temperature dependent acoustic trapping characteristics by using concentric annular type dual element ultrasonic transducer.
    Chung IY; Lee J
    Ultrasonics; 2015 Feb; 56():220-6. PubMed ID: 25106111
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.