These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

325 related articles for article (PubMed ID: 19494153)

  • 1. Human functional magnetic resonance imaging reveals separation and integration of shape and motion cues in biological motion processing.
    Jastorff J; Orban GA
    J Neurosci; 2009 Jun; 29(22):7315-29. PubMed ID: 19494153
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Representation of shapes, edges, and surfaces across multiple cues in the human visual cortex.
    Vinberg J; Grill-Spector K
    J Neurophysiol; 2008 Mar; 99(3):1380-93. PubMed ID: 18171705
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dissociation of extrastriate body and biological-motion selective areas by manipulation of visual-motor congruency.
    Kontaris I; Wiggett AJ; Downing PE
    Neuropsychologia; 2009 Dec; 47(14):3118-24. PubMed ID: 19643118
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integration of shape and motion cues in biological motion processing in the monkey STS.
    Jastorff J; Popivanov ID; Vogels R; Vanduffel W; Orban GA
    Neuroimage; 2012 Apr; 60(2):911-21. PubMed ID: 22245356
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of dorsal and ventral stream development in biological motion perception.
    Lichtensteiger J; Loenneker T; Bucher K; Martin E; Klaver P
    Neuroreport; 2008 Dec; 19(18):1763-7. PubMed ID: 18955908
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distinct neural mechanisms for body form and body motion discriminations.
    Vangeneugden J; Peelen MV; Tadin D; Battelli L
    J Neurosci; 2014 Jan; 34(2):574-85. PubMed ID: 24403156
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Object-based attentional modulation of biological motion processing: spatiotemporal dynamics using functional magnetic resonance imaging and electroencephalography.
    Safford AS; Hussey EA; Parasuraman R; Thompson JC
    J Neurosci; 2010 Jul; 30(27):9064-73. PubMed ID: 20610740
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Occipitotemporal activation evoked by the perception of human bodies is modulated by the presence or absence of the face.
    Morris JP; Pelphrey KA; McCarthy G
    Neuropsychologia; 2006; 44(10):1919-27. PubMed ID: 16545844
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Visual phonetic processing localized using speech and nonspeech face gestures in video and point-light displays.
    Bernstein LE; Jiang J; Pantazis D; Lu ZL; Joshi A
    Hum Brain Mapp; 2011 Oct; 32(10):1660-76. PubMed ID: 20853377
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigating the neural basis of basic human movement perception using multi-voxel pattern analysis.
    Ma F; Xu J; Li X; Wang P; Wang B; Liu B
    Exp Brain Res; 2018 Mar; 236(3):907-918. PubMed ID: 29362830
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of motion in the neural representation of social interactions in the posterior temporal cortex.
    Landsiedel J; Daughters K; Downing PE; Koldewyn K
    Neuroimage; 2022 Nov; 262():119533. PubMed ID: 35931309
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neural representations of faces and body parts in macaque and human cortex: a comparative FMRI study.
    Pinsk MA; Arcaro M; Weiner KS; Kalkus JF; Inati SJ; Gross CG; Kastner S
    J Neurophysiol; 2009 May; 101(5):2581-600. PubMed ID: 19225169
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reading about the actions of others: biological motion imagery and action congruency influence brain activity.
    Deen B; McCarthy G
    Neuropsychologia; 2010 May; 48(6):1607-15. PubMed ID: 20138900
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activation in posterior superior temporal sulcus parallels parameter inducing the percept of animacy.
    Schultz J; Friston KJ; O'Doherty J; Wolpert DM; Frith CD
    Neuron; 2005 Feb; 45(4):625-35. PubMed ID: 15721247
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cortical and subcortical responses to biological motion.
    Chang DHF; Ban H; Ikegaya Y; Fujita I; Troje NF
    Neuroimage; 2018 Jul; 174():87-96. PubMed ID: 29524623
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Global motion stimuli and form-from-motion stimuli: common characteristics and differential activation patterns.
    Vachon P; Voss P; Lassonde M; Leroux JM; Mensour B; Beaudoin G; Bourgouin P; Guillemot JP; Lepore F
    Int J Neurosci; 2009; 119(10):1584-601. PubMed ID: 19922376
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tactile-visual integration in the posterior parietal cortex: a functional magnetic resonance imaging study.
    Nakashita S; Saito DN; Kochiyama T; Honda M; Tanabe HC; Sadato N
    Brain Res Bull; 2008 Mar; 75(5):513-25. PubMed ID: 18355627
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A two-stage framework for neural processing of biological motion.
    Duarte JV; Abreu R; Castelo-Branco M
    Neuroimage; 2022 Oct; 259():119403. PubMed ID: 35738331
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Patterns of fMRI activity dissociate overlapping functional brain areas that respond to biological motion.
    Peelen MV; Wiggett AJ; Downing PE
    Neuron; 2006 Mar; 49(6):815-22. PubMed ID: 16543130
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The posterior cingulate cortex and planum temporale/parietal operculum are activated by coherent visual motion.
    Antal A; Baudewig J; Paulus W; Dechent P
    Vis Neurosci; 2008; 25(1):17-26. PubMed ID: 18282307
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.