These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
254 related articles for article (PubMed ID: 19494239)
1. Electrotonic loading of anisotropic cardiac monolayers by unexcitable cells depends on connexin type and expression level. McSpadden LC; Kirkton RD; Bursac N Am J Physiol Cell Physiol; 2009 Aug; 297(2):C339-51. PubMed ID: 19494239 [TBL] [Abstract][Full Text] [Related]
2. Anisotropic activation spread in heart cell monolayers assessed by high-resolution optical mapping. Role of tissue discontinuities. Fast VG; Darrow BJ; Saffitz JE; Kléber AG Circ Res; 1996 Jul; 79(1):115-27. PubMed ID: 8925559 [TBL] [Abstract][Full Text] [Related]
3. Electrotonic modulation of cardiac impulse conduction by myofibroblasts. Miragoli M; Gaudesius G; Rohr S Circ Res; 2006 Mar; 98(6):801-10. PubMed ID: 16484613 [TBL] [Abstract][Full Text] [Related]
4. Genetically engineered excitable cardiac myofibroblasts coupled to cardiomyocytes rescue normal propagation and reduce arrhythmia complexity in heterocellular monolayers. Hou L; Hu B; Jalife J PLoS One; 2013; 8(2):e55400. PubMed ID: 23393574 [TBL] [Abstract][Full Text] [Related]
5. Coupling of cardiac electrical activity over extended distances by fibroblasts of cardiac origin. Gaudesius G; Miragoli M; Thomas SP; Rohr S Circ Res; 2003 Sep; 93(5):421-8. PubMed ID: 12893743 [TBL] [Abstract][Full Text] [Related]
6. TGF-β Salvarani N; Maguy A; De Simone SA; Miragoli M; Jousset F; Rohr S Circ Arrhythm Electrophysiol; 2017 May; 10(5):e004567. PubMed ID: 28500173 [TBL] [Abstract][Full Text] [Related]
7. Size and ionic currents of unexcitable cells coupled to cardiomyocytes distinctly modulate cardiac action potential shape and pacemaking activity in micropatterned cell pairs. McSpadden LC; Nguyen H; Bursac N Circ Arrhythm Electrophysiol; 2012 Aug; 5(4):821-30. PubMed ID: 22679057 [TBL] [Abstract][Full Text] [Related]
8. Differential Mechanisms of Myocardial Conduction Slowing by Adipose Tissue-Derived Stromal Cells Derived from Different Species. Ten Sande JN; Smit NW; Parvizi M; van Amersfoorth SC; Plantinga JA; van Dessel PF; de Bakker JM; Harmsen MC; Coronel R Stem Cells Transl Med; 2017 Jan; 6(1):22-30. PubMed ID: 28170198 [TBL] [Abstract][Full Text] [Related]
9. Cardiac fibroblast paracrine factors alter impulse conduction and ion channel expression of neonatal rat cardiomyocytes. Pedrotty DM; Klinger RY; Kirkton RD; Bursac N Cardiovasc Res; 2009 Sep; 83(4):688-97. PubMed ID: 19477968 [TBL] [Abstract][Full Text] [Related]
10. Cardiac connexins and impulse propagation. Jansen JA; van Veen TA; de Bakker JM; van Rijen HV J Mol Cell Cardiol; 2010 Jan; 48(1):76-82. PubMed ID: 19729017 [TBL] [Abstract][Full Text] [Related]
11. Gene transfer of connexin43 mutants attenuates coupling in cardiomyocytes: novel basis for modulation of cardiac conduction by gene therapy. Kizana E; Chang CY; Cingolani E; Ramirez-Correa GA; Sekar RB; Abraham MR; Ginn SL; Tung L; Alexander IE; Marbán E Circ Res; 2007 Jun; 100(11):1597-604. PubMed ID: 17495226 [TBL] [Abstract][Full Text] [Related]
12. Resynchronization of separated rat cardiomyocyte fields with genetically modified human ventricular scar fibroblasts. Pijnappels DA; van Tuyn J; de Vries AA; Grauss RW; van der Laarse A; Ypey DL; Atsma DE; Schalij MJ Circulation; 2007 Oct; 116(18):2018-28. PubMed ID: 17938287 [TBL] [Abstract][Full Text] [Related]
13. Distinct gap junction protein phenotypes in cardiac tissues with disparate conduction properties. Davis LM; Kanter HL; Beyer EC; Saffitz JE J Am Coll Cardiol; 1994 Oct; 24(4):1124-32. PubMed ID: 7930207 [TBL] [Abstract][Full Text] [Related]
14. Similar arrhythmicity in hypertrophic and fibrotic cardiac cultures caused by distinct substrate-specific mechanisms. Askar SF; Bingen BO; Schalij MJ; Swildens J; Atsma DE; Schutte CI; de Vries AA; Zeppenfeld K; Ypey DL; Pijnappels DA Cardiovasc Res; 2013 Jan; 97(1):171-81. PubMed ID: 22977008 [TBL] [Abstract][Full Text] [Related]
15. Gap junctional connexins in the developing mouse cardiac conduction system. Miquerol L; Dupays L; Théveniau-Ruissy M; Alcoléa S; Jarry-Guichard T; Abran P; Gros D Novartis Found Symp; 2003; 250():80-98; discussion 98-109, 276-9. PubMed ID: 12956325 [TBL] [Abstract][Full Text] [Related]
16. Cultivation in rotating bioreactors promotes maintenance of cardiac myocyte electrophysiology and molecular properties. Bursac N; Papadaki M; White JA; Eisenberg SR; Vunjak-Novakovic G; Freed LE Tissue Eng; 2003 Dec; 9(6):1243-53. PubMed ID: 14670112 [TBL] [Abstract][Full Text] [Related]
17. Effects of fibroblast-myocyte coupling on cardiac conduction and vulnerability to reentry: A computational study. Xie Y; Garfinkel A; Camelliti P; Kohl P; Weiss JN; Qu Z Heart Rhythm; 2009 Nov; 6(11):1641-9. PubMed ID: 19879544 [TBL] [Abstract][Full Text] [Related]
18. Formation of functional gap junctions in amniotic fluid-derived stem cells induced by transmembrane co-culture with neonatal rat cardiomyocytes. Connell JP; Augustini E; Moise KJ; Johnson A; Jacot JG J Cell Mol Med; 2013 Jun; 17(6):774-81. PubMed ID: 23634988 [TBL] [Abstract][Full Text] [Related]
19. Cardiac muscle cell interaction: from microanatomy to the molecular make-up of the gap junction. Severs NJ Histol Histopathol; 1995 Apr; 10(2):481-501. PubMed ID: 7599443 [TBL] [Abstract][Full Text] [Related]
20. Implication of connexins 40 and 43 in functional coupling between mouse cardiac fibroblasts in primary culture. Louault C; Benamer N; Faivre JF; Potreau D; Bescond J Biochim Biophys Acta; 2008 Oct; 1778(10):2097-104. PubMed ID: 18482576 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]