BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

483 related articles for article (PubMed ID: 19494451)

  • 1. Quantification of diffuse and concentrated pollutant loads at the watershed-scale: an Italian case study.
    Candela A; Freni G; Mannina G; Viviani G
    Water Sci Technol; 2009; 59(11):2125-35. PubMed ID: 19494451
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Separate and combined sewer systems: a long-term modelling approach.
    Mannina G; Viviani G
    Water Sci Technol; 2009; 60(3):555-65. PubMed ID: 19657150
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combined use of the EPA-QUAL2E simulation model and factor analysis to assess the source apportionment of point and non point loads of nutrients to surface waters.
    Azzellino A; Salvetti R; Vismara R; Bonomo L
    Sci Total Environ; 2006 Dec; 371(1-3):214-22. PubMed ID: 16677687
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pollutant sources investigation and remedial strategies development for the Kaoping River Basin, Taiwan.
    Kao CM; Wu FC; Chen KF; Lin TF; Yen YE; Chiang PC
    Water Sci Technol; 2003; 48(7):97-103. PubMed ID: 14653639
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The relative contribution of sewage and diffuse phosphorus sources in the River Avon catchment, southern England: implications for nutrient management.
    Bowes MJ; Hilton J; Irons GP; Hornby DD
    Sci Total Environ; 2005 May; 344(1-3):67-81. PubMed ID: 15907511
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fecal bacteria in the rivers of the Seine drainage network (France): sources, fate and modelling.
    Servais P; Garcia-Armisen T; George I; Billen G
    Sci Total Environ; 2007 Apr; 375(1-3):152-67. PubMed ID: 17239424
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contributions of wastewater, runoff and sewer deposit erosion to wet weather pollutant loads in combined sewer systems.
    Gasperi J; Gromaire MC; Kafi M; Moilleron R; Chebbo G
    Water Res; 2010 Dec; 44(20):5875-86. PubMed ID: 20696453
    [TBL] [Abstract][Full Text] [Related]  

  • 8. River pollution from non-point sources: a new simplified method of assessment.
    Munafò M; Cecchi G; Baiocco F; Mancini L
    J Environ Manage; 2005 Oct; 77(2):93-8. PubMed ID: 15990217
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Water quality modeling to determine minimum instream flow for fish survival in tidal rivers.
    Liu WC; Liu SY; Hsu MH; Kuo AY
    J Environ Manage; 2005 Sep; 76(4):293-308. PubMed ID: 15927355
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toxicity and pollutant impact analysis in an urban river due to combined sewer overflows loads.
    Casadio A; Maglionico M; Bolognesi A; Artina S
    Water Sci Technol; 2010; 61(1):207-15. PubMed ID: 20057107
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sediment and pollutant load modelling using an integrated urban drainage modelling toolbox: an application of City Drain.
    Rodríguez JP; Achleitner S; Möderl M; Rauch W; Maksimović C; McIntyre N; Díaz-Granados MA; Rodríguez MS
    Water Sci Technol; 2010; 61(9):2273-82. PubMed ID: 20418624
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative evaluation of runoff and water quality using HSPF and SWMM.
    Lee SB; Yoon CG; Jung KW; Hwang HS
    Water Sci Technol; 2010; 62(6):1401-9. PubMed ID: 20861556
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Urban water quality modelling: a parsimonious holistic approach for a complex real case study.
    Freni G; Mannina G; Viviani G
    Water Sci Technol; 2010; 61(2):521-36. PubMed ID: 20107280
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of the integrated urban water quality model complexity through identifiability analysis.
    Freni G; Mannina G; Viviani G
    Water Res; 2011 Jan; 45(1):37-50. PubMed ID: 20732705
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pollution loads in urban runoff and sanitary wastewater.
    Taebi A; Droste RL
    Sci Total Environ; 2004 Jul; 327(1-3):175-84. PubMed ID: 15172580
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using remotely sensed imagery to estimate potential annual pollutant loads in river basins.
    He B; Oki K; Wang Y; Oki T
    Water Sci Technol; 2009; 60(8):2009-15. PubMed ID: 19844047
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diffuse source apportionment of the Po river eutrophying load to the Adriatic sea: assessment of Lombardy contribution to Po river nutrient load apportionment by means of an integrated modelling approach.
    Salvetti R; Azzellino A; Vismara R
    Chemosphere; 2006 Dec; 65(11):2168-77. PubMed ID: 16860842
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Geo-referenced modeling of zinc concentrations in the Ruhr river basin (Germany) using the model GREAT-ER.
    Hüffmeyer N; Klasmeier J; Matthies M
    Sci Total Environ; 2009 Mar; 407(7):2296-305. PubMed ID: 19150732
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mass balance approach for assessment of pollution load in the Krishna River.
    Sekhar C; Umamahesh NV
    J Environ Sci Eng; 2004 Apr; 46(2):159-71. PubMed ID: 16649607
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimation of pollutant loads considering dam operation in Han River Basin by BASINS/Hydrological Simulation Program-FORTRAN.
    Jung KW; Yoon CG; Jang JH; Kong DS
    Water Sci Technol; 2008; 58(12):2329-38. PubMed ID: 19092211
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.