These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 19494509)
1. Proteomic Approach to FcepsilonRI aggregation-initiated signal transduction cascade in human mast cells. Yamaoka K; Okayama Y; Kaminuma O; Katayama K; Mori A; Tatsumi H; Nemoto S; Hiroi T Int Arch Allergy Immunol; 2009; 149 Suppl 1():73-6. PubMed ID: 19494509 [TBL] [Abstract][Full Text] [Related]
2. Dok protein family members are involved in signaling mediated by the type 1 Fcepsilon receptor. Abramson J; Rozenblum G; Pecht I Eur J Immunol; 2003 Jan; 33(1):85-91. PubMed ID: 12594836 [TBL] [Abstract][Full Text] [Related]
4. Role of CC chemokines and their receptors in multiple aspects of mast cell biology: comparative protein profiling of FcepsilonRI- and/or CCR1-engaged mast cells using protein chip technology. Toda M; Nakamura T; Ohbayashi M; Ikeda Y; Dawson M; Richardson RM; Alban A; Leed B; Miyazaki D; Ono SJ Novartis Found Symp; 2005; 271():131-40; discussion 140-51. PubMed ID: 16605132 [TBL] [Abstract][Full Text] [Related]
5. Lipoteichoic acid downregulates FcepsilonRI expression on human mast cells through Toll-like receptor 2. Yoshioka M; Fukuishi N; Iriguchi S; Ohsaki K; Yamanobe H; Inukai A; Kurihara D; Imajo N; Yasui Y; Matsui N; Tsujita T; Ishii A; Seya T; Takahama M; Akagi M J Allergy Clin Immunol; 2007 Aug; 120(2):452-61. PubMed ID: 17481719 [TBL] [Abstract][Full Text] [Related]
6. The interaction between Lyn and FcεRIβ is indispensable for FcεRI-mediated human mast cell activation. Okayama Y; Kashiwakura JI; Matsuda A; Sasaki-Sakamoto T; Nunomura S; Yokoi N; Ebihara N; Kuroda K; Ohmori K; Saito H; Ra C Allergy; 2012 Oct; 67(10):1241-9. PubMed ID: 22845063 [TBL] [Abstract][Full Text] [Related]
7. Regulation of IgE-dependent zinc release from human mast cells. Nakashima-Kaneda K; Matsuda A; Mizuguchi H; Sasaki-Sakamoto T; Saito H; Ra C; Okayama Y Int Arch Allergy Immunol; 2013; 161 Suppl 2():44-51. PubMed ID: 23711853 [TBL] [Abstract][Full Text] [Related]
8. C3a-derived peptide binds to the type I FcepsilonR and inhibits proximal-coupling signal processes and cytokine secretion by mast cells. Péterfy H; Tóth G; Pecht I; Erdei A Int Immunol; 2008 Oct; 20(10):1239-45. PubMed ID: 18653698 [TBL] [Abstract][Full Text] [Related]
9. FcepsilonRI-mediated amphiregulin production by human mast cells increases mucin gene expression in epithelial cells. Okumura S; Sagara H; Fukuda T; Saito H; Okayama Y J Allergy Clin Immunol; 2005 Feb; 115(2):272-9. PubMed ID: 15696081 [TBL] [Abstract][Full Text] [Related]
10. Discovery and identification of serine and threonine phosphorylated proteins in activated mast cells: implications for regulation of protein synthesis in the rat basophilic leukemia mast cell line RBL-2H3. Olson FJ; Ludowyke RI; Karlsson NG J Proteome Res; 2009 Jun; 8(6):3068-77. PubMed ID: 19317463 [TBL] [Abstract][Full Text] [Related]
11. Establishment and characterization of continuous hematopoietic progenitors-derived pig normal mast cell lines. Femenia F; Arock M; Leriche L; Delouis C; Millet G; Ben Hamouda N; Cote M; Alliot A; Lilin T; Pinton A; Iannucceli N; Parodi AL; Boireau P Life Sci; 2005 Jul; 77(7):808-23. PubMed ID: 15896811 [TBL] [Abstract][Full Text] [Related]
12. Protein tyrosine nitration of aldolase in mast cells: a plausible pathway in nitric oxide-mediated regulation of mast cell function. Sekar Y; Moon TC; Slupsky CM; Befus AD J Immunol; 2010 Jul; 185(1):578-87. PubMed ID: 20511553 [TBL] [Abstract][Full Text] [Related]
13. Topography of plasma membrane microdomains and its consequences for mast cell signaling. Heneberg P; Lebduska P; Dráberová L; Korb J; Dráber P Eur J Immunol; 2006 Oct; 36(10):2795-806. PubMed ID: 17013982 [TBL] [Abstract][Full Text] [Related]
14. The high-affinity immunoglobulin E receptor (FcepsilonRI) regulates mitochondrial calcium uptake and a dihydropyridine receptor-mediated calcium influx in mast cells: Role of the FcepsilonRIbeta chain immunoreceptor tyrosine-based activation motif. Suzuki Y; Yoshimaru T; Inoue T; Nunomura S; Ra C Biochem Pharmacol; 2008 Apr; 75(7):1492-503. PubMed ID: 18243160 [TBL] [Abstract][Full Text] [Related]
15. Systemic analysis of tyrosine phosphorylated proteins in angiopoietin-1 induced signaling pathway of endothelial cells. Kim YM; Seo J; Kim YH; Jeong J; Joo HJ; Lee DH; Koh GY; Lee KJ J Proteome Res; 2007 Aug; 6(8):3278-90. PubMed ID: 17595127 [TBL] [Abstract][Full Text] [Related]
17. Phosphoprotein profiling of erythropoietin receptor- dependent pathways using different proteomic strategies. Körbel S; Büchse T; Prietzsch H; Sasse T; Schümann M; Krause E; Brock J; Bittorf T Proteomics; 2005 Jan; 5(1):91-100. PubMed ID: 15672454 [TBL] [Abstract][Full Text] [Related]
18. Early osteogenic differential protein profile detected by proteomic analysis in human periodontal ligament cells. Wu L; Wei X; Ling J; Liu L; Liu S; Li M; Xiao Y J Periodontal Res; 2009 Oct; 44(5):645-56. PubMed ID: 19453858 [TBL] [Abstract][Full Text] [Related]
19. Inhibition of IgE-mediated phosphorylation of FcepsilonRIgamma protein by antiallergic drugs in rat basophilic leukemia (RBL-2H3) cells: a novel action of antiallergic drugs. Hanashiro K; Sunagawa M; Nakasone T; Nakamura M; Kosugi T Int Immunopharmacol; 2007 Jul; 7(7):994-1002. PubMed ID: 17499203 [TBL] [Abstract][Full Text] [Related]
20. Tyrosine phosphoproteomics and identification of substrates of protein tyrosine phosphatase dPTP61F in Drosophila S2 cells by mass spectrometry-based substrate trapping strategy. Chang YC; Lin SY; Liang SY; Pan KT; Chou CC; Chen CH; Liao CL; Khoo KH; Meng TC J Proteome Res; 2008 Mar; 7(3):1055-66. PubMed ID: 18281928 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]