BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 19494580)

  • 1. Correlations between carbon metabolism and virulence in bacteria.
    Poncet S; Milohanic E; Mazé A; Abdallah JN; Aké F; Larribe M; Deghmane AE; Taha MK; Dozot M; De Bolle X; Letesson JJ; Deutscher J
    Contrib Microbiol; 2009; 16():88-102. PubMed ID: 19494580
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The mechanisms of carbon catabolite repression in bacteria.
    Deutscher J
    Curr Opin Microbiol; 2008 Apr; 11(2):87-93. PubMed ID: 18359269
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Carbon catabolite repression or how bacteria choose their favorite sugars].
    Galinier A
    Med Sci (Paris); 2018; 34(6-7):531-539. PubMed ID: 30067204
    [TBL] [Abstract][Full Text] [Related]  

  • 4. P-Ser-HPr--a link between carbon metabolism and the virulence of some pathogenic bacteria.
    Deutscher J; Herro R; Bourand A; Mijakovic I; Poncet S
    Biochim Biophys Acta; 2005 Dec; 1754(1-2):118-25. PubMed ID: 16182622
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon catabolite repression in bacteria: choice of the carbon source and autoregulatory limitation of sugar utilization.
    Brückner R; Titgemeyer F
    FEMS Microbiol Lett; 2002 Apr; 209(2):141-8. PubMed ID: 12007797
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interference of components of the phosphoenolpyruvate phosphotransferase system with the central virulence gene regulator PrfA of Listeria monocytogenes.
    Mertins S; Joseph B; Goetz M; Ecke R; Seidel G; Sprehe M; Hillen W; Goebel W; Müller-Altrock S
    J Bacteriol; 2007 Jan; 189(2):473-90. PubMed ID: 17085572
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How seryl-phosphorylated HPr inhibits PrfA, a transcription activator of Listeria monocytogenes virulence genes.
    Herro R; Poncet S; Cossart P; Buchrieser C; Gouin E; Glaser P; Deutscher J
    J Mol Microbiol Biotechnol; 2005; 9(3-4):224-34. PubMed ID: 16415595
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbon catabolite repression on the Rgg2/3 quorum sensing system in Streptococcus pyogenes is mediated by PTS
    Woo JKK; McIver KS; Federle MJ
    Mol Microbiol; 2022 Feb; 117(2):525-538. PubMed ID: 34923680
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glucose-1-phosphate utilization by Listeria monocytogenes is PrfA dependent and coordinately expressed with virulence factors.
    Ripio MT; Brehm K; Lara M; Suárez M; Vázquez-Boland JA
    J Bacteriol; 1997 Nov; 179(22):7174-80. PubMed ID: 9371468
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How Bacterial Pathogens Coordinate Appetite with Virulence.
    Pokorzynski ND; Groisman EA
    Microbiol Mol Biol Rev; 2023 Sep; 87(3):e0019822. PubMed ID: 37358444
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbon catabolite repression in bacteria: many ways to make the most out of nutrients.
    Görke B; Stülke J
    Nat Rev Microbiol; 2008 Aug; 6(8):613-24. PubMed ID: 18628769
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CcpA-mediated repression of Clostridium difficile toxin gene expression.
    Antunes A; Martin-Verstraete I; Dupuy B
    Mol Microbiol; 2011 Feb; 79(4):882-99. PubMed ID: 21299645
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbon catabolite repression in Pseudomonas : optimizing metabolic versatility and interactions with the environment.
    Rojo F
    FEMS Microbiol Rev; 2010 Sep; 34(5):658-84. PubMed ID: 20412307
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glucose-Specific Enzyme IIA of the Phosphoenolpyruvate:Carbohydrate Phosphotransferase System Modulates Chitin Signaling Pathways in Vibrio cholerae.
    Yamamoto S; Ohnishi M
    J Bacteriol; 2017 Sep; 199(18):. PubMed ID: 28461445
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sophisticated Regulation of Transcriptional Factors by the Bacterial Phosphoenolpyruvate: Sugar Phosphotransferase System.
    Galinier A; Deutscher J
    J Mol Biol; 2017 Mar; 429(6):773-789. PubMed ID: 28202392
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The mechanism of sugar-mediated catabolite repression of the propionate catabolic genes in Escherichia coli.
    Park JM; Vinuselvi P; Lee SK
    Gene; 2012 Aug; 504(1):116-21. PubMed ID: 22579471
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction with enzyme IIBMpo (EIIBMpo) and phosphorylation by phosphorylated EIIBMpo exert antagonistic effects on the transcriptional activator ManR of Listeria monocytogenes.
    Zébré AC; Aké FM; Ventroux M; Koffi-Nevry R; Noirot-Gros MF; Deutscher J; Milohanic E
    J Bacteriol; 2015 May; 197(9):1559-72. PubMed ID: 25691525
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Global control of sugar metabolism: a gram-positive solution.
    Titgemeyer F; Hillen W
    Antonie Van Leeuwenhoek; 2002 Aug; 82(1-4):59-71. PubMed ID: 12369205
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon catabolite repression in bacteria.
    Stülke J; Hillen W
    Curr Opin Microbiol; 1999 Apr; 2(2):195-201. PubMed ID: 10322165
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbon catabolite regulation in Streptomyces: new insights and lessons learned.
    Romero-Rodríguez A; Rocha D; Ruiz-Villafán B; Guzmán-Trampe S; Maldonado-Carmona N; Vázquez-Hernández M; Zelarayán A; Rodríguez-Sanoja R; Sánchez S
    World J Microbiol Biotechnol; 2017 Sep; 33(9):162. PubMed ID: 28770367
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.