These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 19494584)
61. Mechanistic study of base-pairing small regulatory RNAs in bacteria. Jagodnik J; Brosse A; Le Lam TN; Chiaruttini C; Guillier M Methods; 2017 Mar; 117():67-76. PubMed ID: 27693881 [TBL] [Abstract][Full Text] [Related]
62. Thermal control of microbial development and virulence: molecular mechanisms of microbial temperature sensing. Shapiro RS; Cowen LE mBio; 2012; 3(5):. PubMed ID: 23033469 [TBL] [Abstract][Full Text] [Related]
63. Toward reprogramming bacteria with small molecules and RNA. Gallivan JP Curr Opin Chem Biol; 2007 Dec; 11(6):612-9. PubMed ID: 17967431 [TBL] [Abstract][Full Text] [Related]
64. Identification of Novel Thermosensors in Gram-Positive Pathogens. Fernández P; Díaz AR; Ré MF; Porrini L; de Mendoza D; Albanesi D; Mansilla MC Front Mol Biosci; 2020; 7():592747. PubMed ID: 33324680 [TBL] [Abstract][Full Text] [Related]
65. Microbial Mechanisms of Heat Sensing. Samtani H; Unni G; Khurana P Indian J Microbiol; 2022 Jun; 62(2):175-186. PubMed ID: 35261412 [TBL] [Abstract][Full Text] [Related]
66. Feeling the Heat: Searching for Plant Thermosensors. Vu LD; Gevaert K; De Smet I Trends Plant Sci; 2019 Mar; 24(3):210-219. PubMed ID: 30573309 [TBL] [Abstract][Full Text] [Related]
68. Temperature sensing and virulence regulation in pathogenic bacteria. Roncarati D; Vannini A; Scarlato V Trends Microbiol; 2024 Aug; ():. PubMed ID: 39164134 [TBL] [Abstract][Full Text] [Related]
69. Emerging Plant Thermosensors: From RNA to Protein. Lin J; Xu Y; Zhu Z Trends Plant Sci; 2020 Dec; 25(12):1187-1189. PubMed ID: 32896489 [TBL] [Abstract][Full Text] [Related]
70. Temperature regulation of virulence genes in pathogenic bacteria: a general strategy for human pathogens? Maurelli AT Microb Pathog; 1989 Jul; 7(1):1-10. PubMed ID: 2682128 [No Abstract] [Full Text] [Related]
72. Impact of temperature-dependent phage expression on Pseudomonas aeruginosa biofilm formation. Bisht K; Moore JL; Caprioli RM; Skaar EP; Wakeman CA NPJ Biofilms Microbiomes; 2021 Mar; 7(1):22. PubMed ID: 33727555 [TBL] [Abstract][Full Text] [Related]
73. Coupled Transcription-Translation in Prokaryotes: An Old Couple With New Surprises. Irastortza-Olaziregi M; Amster-Choder O Front Microbiol; 2020; 11():624830. PubMed ID: 33552035 [TBL] [Abstract][Full Text] [Related]
74. Structure and mechanism of a molecular rheostat, an RNA thermometer that modulates immune evasion by Neisseria meningitidis. Barnwal RP; Loh E; Godin KS; Yip J; Lavender H; Tang CM; Varani G Nucleic Acids Res; 2016 Nov; 44(19):9426-9437. PubMed ID: 27369378 [TBL] [Abstract][Full Text] [Related]
75. Thermal control of virulence factors in bacteria: a hot topic. Lam O; Wheeler J; Tang CM Virulence; 2014; 5(8):852-62. PubMed ID: 25494856 [TBL] [Abstract][Full Text] [Related]
76. Regulation of Pseudomonas aeruginosa virulence factors by two novel RNA thermometers. Grosso-Becerra MV; Croda-García G; Merino E; Servín-González L; Mojica-Espinosa R; Soberón-Chávez G Proc Natl Acad Sci U S A; 2014 Oct; 111(43):15562-7. PubMed ID: 25313031 [TBL] [Abstract][Full Text] [Related]
77. Evolution of helix formation in the ribosomal Internal Transcribed Spacer 2 (ITS2) and its significance for RNA secondary structures. Caisová L; Melkonian M J Mol Evol; 2014 Jun; 78(6):324-37. PubMed ID: 24908393 [TBL] [Abstract][Full Text] [Related]