These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 19494932)

  • 1. Programmable apodizer to compensate chromatic aberration effects using a liquid crystal spatial light modulator.
    Márquez A; Iemmi C; Campos J; Escalera J; Yzuel M
    Opt Express; 2005 Feb; 13(3):716-30. PubMed ID: 19494932
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic compensation of chromatic aberration in a programmable diffractive lens.
    Millán MS; Otón J; Pérez-Cabré E
    Opt Express; 2006 Oct; 14(20):9103-12. PubMed ID: 19529291
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Programmable axial apodizing and hyperresolving amplitude filters with a liquid-crystal spatial light modulator.
    Davis JA; Escalera JC; Campos J; Marquez A; Yzuel MJ; Iemmi C
    Opt Lett; 1999 May; 24(9):628-30. PubMed ID: 18073805
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chromatic compensation of programmable Fresnel lenses.
    Millán MS; Otón J; Pérez-Cabré E
    Opt Express; 2006 Jun; 14(13):6226-42. PubMed ID: 19516795
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amplitude Apodizers Encoded onto Fresnel Lenses Implemented on a Phase-Only Spatial Light Modulator.
    Márquez A; Iemmi C; Escalera JC; Campos J; Ledesma S; Davis JA; Yzuel MJ
    Appl Opt; 2001 May; 40(14):2316-22. PubMed ID: 18357241
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinoform using an electrically controlled birefringent liquid-crystal spatial light modulator.
    Amako J; Sonehara T
    Appl Opt; 1991 Nov; 30(32):4622-8. PubMed ID: 20717261
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calculation of retinal image quality for polychromatic light.
    Ravikumar S; Thibos LN; Bradley A
    J Opt Soc Am A Opt Image Sci Vis; 2008 Oct; 25(10):2395-407. PubMed ID: 18830317
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Binocular visual acuity for the correction of spherical aberration in polychromatic and monochromatic light.
    Schwarz C; Cánovas C; Manzanera S; Weeber H; Prieto PM; Piers P; Artal P
    J Vis; 2014 Feb; 14(2):. PubMed ID: 24520150
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of chromatic dispersion on pseudophakic optical performance.
    Zhao H; Mainster MA
    Br J Ophthalmol; 2007 Sep; 91(9):1225-9. PubMed ID: 17475697
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fractional Fourier transform optical system with programmable diffractive lenses.
    Moreno I; Davis JA; Crabtree K
    Appl Opt; 2003 Nov; 42(32):6544-8. PubMed ID: 14650498
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Method for analysis of wavelength dependence of aberrations and image quality for axial object point.
    Miks A; Novák J; Novák P
    Appl Opt; 2009 Aug; 48(22):4381-8. PubMed ID: 19649042
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Susceptibility to and correction of azimuthal aberrations in singular light beams.
    Boruah BR; Neil MA
    Opt Express; 2006 Oct; 14(22):10377-85. PubMed ID: 19529436
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Liquid crystal spatial light modulator with very large phase modulation operating in high harmonic orders.
    Calero V; García-Martínez P; Albero J; Sánchez-López MM; Moreno I
    Opt Lett; 2013 Nov; 38(22):4663-6. PubMed ID: 24322100
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chromatic aberration control with liquid crystal spatial phase modulators.
    Martinez JL; Fernandez EJ; Prieto PM; Artal P
    Opt Express; 2017 May; 25(9):9793-9801. PubMed ID: 28468359
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Liquid crystal wavefront correction based on improved machine learning for free-space optical communication.
    Guo H; Tang W; Wang Z; Yuan L; Li Y; He D; Wang Q; Huang Y
    Appl Opt; 2023 Dec; 62(36):9470-9475. PubMed ID: 38108771
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Backplane aberration calibration of spatial light modulators using a phase-retrieval algorithm.
    Chen X; Shi Z; Chen X; Li J; Liu W
    Appl Opt; 2016 Nov; 55(31):8916-8924. PubMed ID: 27828293
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Depth of focus increase by multiplexing programmable diffractive lenses.
    Iemmi C; Campos J; Escalera JC; López-Coronado O; Gimeno R; Yzuel MJ
    Opt Express; 2006 Oct; 14(22):10207-19. PubMed ID: 19529416
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two-dimensional polarization encoding with a phase-only liquid-crystal spatial light modulator.
    Davis JA; McNamara DE; Cottrell DM; Sonehara T
    Appl Opt; 2000 Apr; 39(10):1549-54. PubMed ID: 18345050
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Full-field phase modulation characterization of liquid-crystal spatial light modulator using digital holography.
    Dev K; Singh VR; Asundi A
    Appl Opt; 2011 Apr; 50(11):1593-600. PubMed ID: 21478934
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polychromatic axial behavior of aberrated optical systems: Wigner distribution function approach.
    Furlan WD; Saavedra G; Silvestre E; Andrés P; Yzuel MJ
    Appl Opt; 1997 Dec; 36(35):9146-51. PubMed ID: 18264472
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.