These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 19494950)

  • 1. Precise measurements of optical cavity dispersion and mirror coating properties via femtosecond combs.
    Thorpe M; Jones R; Moll K; Ye J; Lalezari R
    Opt Express; 2005 Feb; 13(3):882-8. PubMed ID: 19494950
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Broadband dispersion-free optical cavities based on zero group delay dispersion mirror sets.
    Chen LJ; Chang G; Li CH; Benedick AJ; Philips DF; Walsworth RL; Kärtner FX
    Opt Express; 2010 Oct; 18(22):23204-11. PubMed ID: 21164661
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Broadband, rapidly tunable Ti:sapphire-pumped BiB₃O₆ femtosecond optical parametric oscillator.
    Esteban-Martin A; Ramaiah-Badarla V; Petrov V; Ebrahim-Zadeh M
    Opt Lett; 2011 May; 36(9):1671-3. PubMed ID: 21540964
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Complete characterization of a broadband high-finesse cavity using an optical frequency comb.
    Schliesser A; Gohle C; Udem T; Hänsch TW
    Opt Express; 2006 Jun; 14(13):5975-83. PubMed ID: 19516768
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonlinear dynamics inside femtosecond enhancement cavities.
    Moll K; Jones R; Ye J
    Opt Express; 2005 Mar; 13(5):1672-8. PubMed ID: 19495044
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simple method to determine dispersion of high-finesse optical cavities.
    Hammond TJ; Mills AK; Jones DJ
    Opt Express; 2009 May; 17(11):8998-9005. PubMed ID: 19466149
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Widely tunable cavity-enhanced frequency combs.
    Silfies MC; Kowzan G; Chen Y; Lewis N; Hou R; Baehre R; Gross T; Allison TK
    Opt Lett; 2020 Apr; 45(7):2123-2126. PubMed ID: 32236084
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly dispersive mirror in Ta2O5/SiO2 for femtosecond lasers designed by inverse spectral theory.
    Dods SR; Zhang Z; Ogura M
    Appl Opt; 1999 Jul; 38(21):4711-9. PubMed ID: 18323959
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensitive and broadband measurement of dispersion in a cavity using a Fourier transform spectrometer with kHz resolution.
    Rutkowski L; Johansson AC; Zhao G; Hausmaninger T; Khodabakhsh A; Axner O; Foltynowicz A
    Opt Express; 2017 Sep; 25(18):21711-21718. PubMed ID: 29041465
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Broadband Kerr frequency combs and intracavity soliton dynamics influenced by high-order cavity dispersion.
    Wang S; Guo H; Bai X; Zeng X
    Opt Lett; 2014 May; 39(10):2880-3. PubMed ID: 24978227
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly sensitive dispersion measurement of a high-power passive optical resonator using spatial-spectral interferometry.
    Pupeza I; Gu X; Fill E; Eidam T; Limpert J; Tünnermann A; Krausz F; Udem T
    Opt Express; 2010 Dec; 18(25):26184-95. PubMed ID: 21164968
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design of Broadband Flat Optical Frequency Comb Based on Cascaded Sign-Alternated Dispersion Tellurite Microstructure Fiber.
    Huang G; Fu M; Qi J; Pan J; Yi W; Li X
    Micromachines (Basel); 2021 Oct; 12(10):. PubMed ID: 34683303
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phase-coherent frequency combs in the vacuum ultraviolet via high-harmonic generation inside a femtosecond enhancement cavity.
    Jones RJ; Moll KD; Thorpe MJ; Ye J
    Phys Rev Lett; 2005 May; 94(19):193201. PubMed ID: 16090171
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dispersion management in femtosecond laser oscillators with highly dispersive mirrors.
    Dombi P; Rácz P; Lenner M; Pervak V; Krausz F
    Opt Express; 2009 Oct; 17(22):20598-604. PubMed ID: 19997288
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extreme nonlinear optics in a femtosecond enhancement cavity.
    Allison TK; Cingöz A; Yost DC; Ye J
    Phys Rev Lett; 2011 Oct; 107(18):183903. PubMed ID: 22107632
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering the spectral bandwidth of quantum cascade laser frequency combs.
    Beiser M; Opačak N; Hillbrand J; Strasser G; Schwarz B
    Opt Lett; 2021 Jul; 46(14):3416-3419. PubMed ID: 34264227
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical frequency comb generation from a monolithic microresonator.
    Del'Haye P; Schliesser A; Arcizet O; Wilken T; Holzwarth R; Kippenberg TJ
    Nature; 2007 Dec; 450(7173):1214-7. PubMed ID: 18097405
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chirped mirrors with low dispersion ripple.
    Pervak V; Naumov S; Krausz F; Apolonski A
    Opt Express; 2007 Oct; 15(21):13768-72. PubMed ID: 19550647
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimizing intracavity high harmonic generation for XUV fs frequency combs.
    Lee J; Carlson DR; Jones RJ
    Opt Express; 2011 Nov; 19(23):23315-26. PubMed ID: 22109209
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrated fiber-mirror ion trap for strong ion-cavity coupling.
    Brandstätter B; McClung A; Schüppert K; Casabone B; Friebe K; Stute A; Schmidt PO; Deutsch C; Reichel J; Blatt R; Northup TE
    Rev Sci Instrum; 2013 Dec; 84(12):123104. PubMed ID: 24387417
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.