These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 19494953)

  • 21. Rapid polishing process for the x ray reflector.
    Yin L; Lin Z; Hu H; Dai Y
    Appl Opt; 2022 Sep; 61(27):7991-7998. PubMed ID: 36255920
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Edge control in a computer controlled optical surfacing process using a heterocercal tool influence function.
    Hu H; Zhang X; Ford V; Luo X; Qi E; Zeng X; Zhang X
    Opt Express; 2016 Nov; 24(23):26809-26824. PubMed ID: 27857410
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Understanding and reducing mid-spatial frequency ripples during hemispherical sub-aperture tool glass polishing.
    Suratwala T; Menapace J; Tham G; Steele R; Wong L; Ray N; Bauman B
    Appl Opt; 2022 Apr; 61(11):3084-3095. PubMed ID: 35471283
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Time-varying tool influence function model of bonnet polishing for aspheric surfaces.
    Zhong B; Wang C; Chen X; Wang J
    Appl Opt; 2019 Feb; 58(4):1101-1109. PubMed ID: 30874159
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Research on edge-control methods in CNC polishing.
    Yu G; Walker D; Li H; Zheng X; Beaucamp A
    J Eur Opt Soc Rapid Publ; 2017; 13(1):24. PubMed ID: 32010433
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Active hexagonally segmented mirror to investigate new optical phasing technologies for segmented telescopes.
    Gonté F; Dupuy C; Luong B; Frank C; Brast R; Sedghi B
    Appl Opt; 2009 Nov; 48(32):6392-9. PubMed ID: 19904341
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Understanding the tool influence function during sub-aperture belt-on-wheel glass polishing.
    Suratwala T; Ross J; Steele R; Tham G; Wong L; Wolfs F; Defisher S; Bechtold R; Rinkus M; Mah C
    Appl Opt; 2023 Jan; 62(1):91-101. PubMed ID: 36606856
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Optimization technique for rolled edge control process based on the acentric tool influence functions.
    Du H; Song C; Li S; Xu M; Peng X
    Appl Opt; 2017 May; 56(15):4330-4337. PubMed ID: 29047857
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Primary mirror segmentation for large optical telescopes: an inverse map projection approach.
    Zheng Y; Tang L; Liang B; Li Y
    Appl Opt; 2021 Jul; 60(21):6015-6022. PubMed ID: 34613265
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rapid fabrication strategy for Ø1.5  m off-axis parabolic parts using computer-controlled optical surfacing.
    Hu H; Qi E; Luo X; Zhang X; Xue D
    Appl Opt; 2018 Dec; 57(34):F37-F43. PubMed ID: 30645273
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Edges in CNC polishing: from mirror-segments towards semiconductors, paper 1: edges on processing the global surface.
    Walker D; Yu G; Li H; Messelink W; Evans R; Beaucamp A
    Opt Express; 2012 Aug; 20(18):19787-98. PubMed ID: 23037031
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dual-tool multiplexing model of parallel computer controlled optical surfacing.
    Ke X; Wang T; Choi H; Pullen W; Huang L; Idir M; Kim DW
    Opt Lett; 2020 Dec; 45(23):6426-6429. PubMed ID: 33258828
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Optimization of computer controlled polishing.
    Jones RA
    Appl Opt; 1977 Jan; 16(1):218-24. PubMed ID: 20168455
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rapid fabrication of a silicon modification layer on silicon carbide substrate.
    Bai Y; Li L; Xue D; Zhang X
    Appl Opt; 2016 Aug; 55(22):5814-20. PubMed ID: 27505358
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A nickel-carbon-fibre composite for large adaptive mirrors: fabrication methods and properties.
    Thompson SJ; Brooks D; Doel AP
    Opt Express; 2008 Jan; 16(2):1321-30. PubMed ID: 18542204
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Study on active lap tool influence function in grinding 1.8 m primary mirror.
    Haitao L; Zhige Z; Fan W; Bin F; Yongjian W
    Appl Opt; 2013 Nov; 52(31):7504-11. PubMed ID: 24216650
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Modeling the hydrodynamic impact on the tool influence function during hemispherical subaperture optical polishing.
    Ray NJ; Suratwala T; Menapace J; Wong L; Steele W; Tham G; Bauman B
    Appl Opt; 2022 Jun; 61(18):5392-5400. PubMed ID: 36256106
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Novel cavitation fluid jet polishing process based on negative pressure effects.
    Chen F; Wang H; Tang Y; Yin S; Huang S; Zhang G
    Ultrason Sonochem; 2018 Apr; 42():339-346. PubMed ID: 29429678
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Super-smooth surface fabrication technique and experimental research.
    Zhang L; Wang J; Zhang J
    Appl Opt; 2012 Sep; 51(27):6612-7. PubMed ID: 23033032
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Investigation of the tool influence function neighborhood effect in atmospheric pressure plasma processing based on an innovative reverse analysis method.
    Ji P; Li D; Su X; Jin Y; Qiao Z; Wang B; Ding F
    Opt Express; 2021 Sep; 29(20):31376-31392. PubMed ID: 34615231
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.