These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 19494966)

  • 1. A large-depth-of-field projected fringe profilometry using supercontinuum light illumination.
    Su WH; Shi K; Liu Z; Wang B; Reichard K; Yin S
    Opt Express; 2005 Feb; 13(3):1025-32. PubMed ID: 19494966
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Research Progress of Supercontinuum Laser Spectroscopy in Biomedical Field].
    Wan X; Liu PX; Zhang TT
    Guang Pu Xue Yu Guang Pu Fen Xi; 2017 Feb; 37(2):338-45. PubMed ID: 30264958
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Near-infrared supercontinuum source by intracavity silica-based highly-nonlinear fiber.
    López-Ripa M; Jarabo S; Salgado-Remacha FJ
    Opt Lett; 2019 Apr; 44(8):2016-2019. PubMed ID: 30985799
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calibration-based two-frequency projected fringe profilometry: a robust, accurate, and single-shot measurement for objects with large depth discontinuities.
    Su WH; Liu H
    Opt Express; 2006 Oct; 14(20):9178-87. PubMed ID: 19529298
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep-UV-enhanced supercontinuum generated in a tapered gas-filled photonic crystal fiber.
    Suresh MI; Hammer J; Joly NY; Russell PSJ; Tani F
    Opt Lett; 2021 Sep; 46(18):4526-4529. PubMed ID: 34525038
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Projected fringe profilometry using a liquid-crystal spatial light modulator to extend the depth measuring range.
    Su WH; Hsu CH; Su WC; Liu JP
    Opt Express; 2011 Feb; 19(4):3272-83. PubMed ID: 21369149
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theoretical design of a liquid-core photonic crystal fiber for supercontinuum generation.
    Zhang R; Teipel J; Giessen H
    Opt Express; 2006 Jul; 14(15):6800-12. PubMed ID: 19516862
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Supercontinuum generation in highly nonlinear fibers using amplified noise-like optical pulses.
    Lin SS; Hwang SK; Liu JM
    Opt Express; 2014 Feb; 22(4):4152-60. PubMed ID: 24663739
    [TBL] [Abstract][Full Text] [Related]  

  • 9. All-photonic-crystal-fiber coherent black-light source.
    Liu BW; Hu M; Wang SJ; Chai L; Wang C; Dai NL; Li JY; Zheltikov AM
    Opt Lett; 2010 Dec; 35(23):3958-60. PubMed ID: 21124578
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct comparison of shot-to-shot noise performance of all normal dispersion and anomalous dispersion supercontinuum pumped with sub-picosecond pulse fiber-based laser.
    Klimczak M; Soboń G; Kasztelanic R; Abramski KM; Buczyński R
    Sci Rep; 2016 Jan; 6():19284. PubMed ID: 26759188
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultra-flat supercontinuum generated from high-power, picosecond telecommunication fiber laser source.
    Liao R; Song Y; Zhou X; Chai L; Wang C; Hu M
    Appl Opt; 2016 Nov; 55(33):9384-9388. PubMed ID: 27869837
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gain-switched CW fiber laser for improved supercontinuum generation in a PCF.
    Larsen C; Noordegraaf D; Skovgaard PM; Hansen KP; Mattsson KE; Bang O
    Opt Express; 2011 Aug; 19(16):14883-91. PubMed ID: 21934849
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Broadband supercontinuum interferometer for high-resolution profilometry.
    Reolon D; Jacquot M; Verrier I; Brun G; Veillas C
    Opt Express; 2006 Jan; 14(1):128-37. PubMed ID: 19503324
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber.
    Joly NY; Nold J; Chang W; Hölzer P; Nazarkin A; Wong GK; Biancalana F; Russell PS
    Phys Rev Lett; 2011 May; 106(20):203901. PubMed ID: 21668228
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A rapid excitation-emission matrix fluorometer utilizing supercontinuum white light and acousto-optic tunable filters.
    Wang W; Wu Z; Zhao J; Lui H; Zeng H
    Rev Sci Instrum; 2016 Jun; 87(6):063117. PubMed ID: 27370436
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long distance active hyperspectral sensing using high-power near-infrared supercontinuum light source.
    Manninen A; Kääriäinen T; Parviainen T; Buchter S; Heiliö M; Laurila T
    Opt Express; 2014 Mar; 22(6):7172-7. PubMed ID: 24664065
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep Learning-Based 3D Measurements with Near-Infrared Fringe Projection.
    Wang J; Li Y; Ji Y; Qian J; Che Y; Zuo C; Chen Q; Feng S
    Sensors (Basel); 2022 Aug; 22(17):. PubMed ID: 36080928
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Picosecond supercontinuum light source for stroboscopic white-light interferometry with freely adjustable pulse repetition rate.
    Novotny S; Durairaj V; Shavrin I; Lipiäinen L; Kokkonen K; Kaivola M; Ludvigsen H
    Opt Express; 2014 Jun; 22(11):13625-33. PubMed ID: 24921556
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High power, single mode, all-fiber source of femtosecond pulses at 1550 nm and its use in supercontinuum generation.
    Nicholson J; Yablon A; Westbrook P; Feder K; Yan M
    Opt Express; 2004 Jun; 12(13):3025-34. PubMed ID: 19483820
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Broadband IR supercontinuum generation using single crystal sapphire fibers.
    Kim JH; Chen MK; Yang CE; Lee J; Yin SS; Ruffin P; Edwards E; Brantley C; Luo C
    Opt Express; 2008 Mar; 16(6):4085-93. PubMed ID: 18542506
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.