These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 19494979)

  • 1. Force detection in optical tweezers using backscattered light.
    Huisstede J; van der Werf K; Bennink M; Subramaniam V
    Opt Express; 2005 Feb; 13(4):1113-23. PubMed ID: 19494979
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical analysis for transverse microbead trapping using 30 MHz focused ultrasound in ray acoustics regime.
    Lee J
    Ultrasonics; 2014 Jan; 54(1):11-9. PubMed ID: 23809757
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical tweezers based force measurement system for quantitating binding interactions: system design and application for the study of bacterial adhesion.
    Fällman E; Schedin S; Jass J; Andersson M; Uhlin BE; Axner O
    Biosens Bioelectron; 2004 Jun; 19(11):1429-37. PubMed ID: 15093214
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurement of probe displacement to the thermal resolution limit in photonic force microscopy using a miniature quadrant photodetector.
    Pal SB; Haldar A; Roy B; Banerjee A
    Rev Sci Instrum; 2012 Feb; 83(2):023108. PubMed ID: 22380080
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calibration of force detection for arbitrarily shaped particles in optical tweezers.
    Bui AAM; Kashchuk AV; Balanant MA; Nieminen TA; Rubinsztein-Dunlop H; Stilgoe AB
    Sci Rep; 2018 Jul; 8(1):10798. PubMed ID: 30018378
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Moiré deflectometry-based position detection for optical tweezers.
    Khorshad AA; Reihani SNS; Tavassoly MT
    Opt Lett; 2017 Sep; 42(17):3506-3509. PubMed ID: 28957074
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Back-focal-plane displacement detection using side-scattered light in dual-beam fiber-optic traps.
    Xiong W; Xiao G; Han X; Zhou J; Chen X; Luo H
    Opt Express; 2017 Apr; 25(8):9449-9457. PubMed ID: 28437907
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pulsed laser manipulation of an optically trapped bead: averaging thermal noise and measuring the pulsed force amplitude.
    Lindballe TB; Kristensen MV; Berg-Sørensen K; Keiding SR; Stapelfeldt H
    Opt Express; 2013 Jan; 21(2):1986-96. PubMed ID: 23389179
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potential mapping of optical tweezers.
    Godazgar T; Shokri R; Reihani SN
    Opt Lett; 2011 Aug; 36(16):3284-6. PubMed ID: 21847235
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bessel beam optical tweezers for manipulating superparamagnetic beads.
    Andrade UMS; Garcia AM; Rocha MS
    Appl Opt; 2021 Apr; 60(12):3422-3429. PubMed ID: 33983247
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Counter-propagating dual-trap optical tweezers based on linear momentum conservation.
    Ribezzi-Crivellari M; Huguet JM; Ritort F
    Rev Sci Instrum; 2013 Apr; 84(4):043104. PubMed ID: 23635178
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single beam optical tweezers setup with backscattered light detection for three-dimensional measurements on DNA and nanopores.
    Sischka A; Kleimann C; Hachmann W; Schäfer MM; Seuffert I; Tönsing K; Anselmetti D
    Rev Sci Instrum; 2008 Jun; 79(6):063702. PubMed ID: 18601408
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New Detector Sensitivity Calibration and the Calculation of the Interaction Force between Particles Using an Optical Tweezer.
    Yale P; Konin JE; Kouacou MA; Zoueu JT
    Micromachines (Basel); 2018 Aug; 9(9):. PubMed ID: 30424358
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of the force constant of a single-beam gradient trap by measurement of backscattered light.
    Friese ME; Rubinsztein-Dunlop H; Heckenberg NR; Dearden EW
    Appl Opt; 1996 Dec; 35(36):7112-6. PubMed ID: 21151316
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Why single-beam optical tweezers trap gold nanowires in three dimensions.
    Yan Z; Pelton M; Vigderman L; Zubarev ER; Scherer NF
    ACS Nano; 2013 Oct; 7(10):8794-800. PubMed ID: 24041038
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Real-time nonlinear correction of back-focal-plane detection in optical tweezers.
    Aggarwal T; Salapaka M
    Rev Sci Instrum; 2010 Dec; 81(12):123105. PubMed ID: 21198012
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative measurements of force and displacement using an optical trap.
    Simmons RM; Finer JT; Chu S; Spudich JA
    Biophys J; 1996 Apr; 70(4):1813-22. PubMed ID: 8785341
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Back-focal-plane position detection with extended linear range for photonic force microscopy.
    Martínez IA; Petrov D
    Appl Opt; 2012 Sep; 51(25):5973-7. PubMed ID: 22945141
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Real-time identification of the singleness of a trapped bead in optical tweezers.
    Hu C; Su C; Yun Z; Wang S; He C; Gao X; Li S; Li H; Hu X; Hu X
    Appl Opt; 2018 Feb; 57(5):1241-1246. PubMed ID: 29469870
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Localized dynamic light scattering: a new approach to dynamic measurements in optical microscopy.
    Meller A; Bar-Ziv R; Tlusty T; Moses E; Stavans J; Safran SA
    Biophys J; 1998 Mar; 74(3):1541-8. PubMed ID: 9512050
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.