These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 19495121)

  • 1. Radiation pressure and the distribution of electromagnetic force in dielectric media.
    Zakharian A; Mansuripur M; Moloney J
    Opt Express; 2005 Apr; 13(7):2321-36. PubMed ID: 19495121
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-beam trapping of micro-beads in polarized light: Numerical simulations.
    Zakharian AR; Polynkin P; Mansuripur M; Moloney JV
    Opt Express; 2006 Apr; 14(8):3660-76. PubMed ID: 19516513
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Radiation pressure and the linear momentum of the electromagnetic field.
    Mansuripur M
    Opt Express; 2004 Nov; 12(22):5375-401. PubMed ID: 19484099
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Trapping of a micro-bubble by non-paraxial Gaussian beam: computation using the FDTD method.
    Sung SY; Lee YG
    Opt Express; 2008 Mar; 16(5):3463-73. PubMed ID: 18542438
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Radiation pressure of active dispersive chiral slabs.
    Wang M; Li H; Gao D; Gao L; Xu J; Qiu CW
    Opt Express; 2015 Jun; 23(13):16546-53. PubMed ID: 26191666
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Radiation pressure on a dielectric wedge.
    Mansuripur M; Zakharian A; Moloney J
    Opt Express; 2005 Mar; 13(6):2064-74. PubMed ID: 19495091
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical analysis for transverse microbead trapping using 30 MHz focused ultrasound in ray acoustics regime.
    Lee J
    Ultrasonics; 2014 Jan; 54(1):11-9. PubMed ID: 23809757
    [TBL] [Abstract][Full Text] [Related]  

  • 8. FDTD simulations of forces on particles during holographic assembly.
    Benito DC; Simpson SH; Hanna S
    Opt Express; 2008 Mar; 16(5):2942-57. PubMed ID: 18542380
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime.
    Ashkin A
    Biophys J; 1992 Feb; 61(2):569-82. PubMed ID: 19431818
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Division of the momentum of electromagnetic waves in linear media into electromagnetic and material parts.
    Saldanha PL
    Opt Express; 2010 Feb; 18(3):2258-68. PubMed ID: 20174054
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Arbitrary scattering of an electromagnetic zero-order Bessel beam by a dielectric sphere.
    Mitri FG
    Opt Lett; 2011 Mar; 36(5):766-8. PubMed ID: 21368976
    [TBL] [Abstract][Full Text] [Related]  

  • 12. General finite-difference time-domain solution of an arbitrary electromagnetic source interaction with an arbitrary dielectric surface.
    Sun W; Pan H; Videen G
    Appl Opt; 2009 Nov; 48(31):6015-25. PubMed ID: 19881669
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Trouble with the Lorentz law of force: incompatibility with special relativity and momentum conservation.
    Mansuripur M
    Phys Rev Lett; 2012 May; 108(19):193901. PubMed ID: 23003039
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Radiation force of highly focused Lorentz-Gauss beams on a Rayleigh particle.
    Jiang Y; Huang K; Lu X
    Opt Express; 2011 May; 19(10):9708-13. PubMed ID: 21643228
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acoustic radiation force of high-order Bessel beam standing wave tweezers on a rigid sphere.
    Mitri FG
    Ultrasonics; 2009 Dec; 49(8):794-8. PubMed ID: 19692103
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Radiation pressure and the linear momentum of the electromagnetic field in magnetic media.
    Mansuripur M
    Opt Express; 2007 Oct; 15(21):13502-18. PubMed ID: 19550619
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical Exposure Assessment Method for Low Frequency Range and Application to Wireless Power Transfer.
    Park S; Kim M
    PLoS One; 2016; 11(11):e0166720. PubMed ID: 27898688
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Finite-difference analysis of plasmon-induced forces of metal nano-clusters by the Lorentz force formulation.
    Fujii M
    Opt Express; 2010 Dec; 18(26):27731-47. PubMed ID: 21197048
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical trapping of dielectric particles in arbitrary fields.
    Rohrbach A; Stelzer EH
    J Opt Soc Am A Opt Image Sci Vis; 2001 Apr; 18(4):839-53. PubMed ID: 11318334
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electromagnetic forces for an arbitrary optical trapping of a spherical dielectric.
    Neves AA; Fontes A; Pozzo Lde Y; de Thomaz AA; Chillce E; Rodriguez E; Barbosa LC; Cesar CL
    Opt Express; 2006 Dec; 14(26):13101-6. PubMed ID: 19532206
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.