BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 19495144)

  • 1. Above-water measurements of reflectance and chlorophyll-a algorithms in the Gulf of Lions, NW Mediterranean Sea.
    Ouillon S; Petrenko A
    Opt Express; 2005 Apr; 13(7):2531-48. PubMed ID: 19495144
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In situ spectral response of the Arabian Gulf and Sea of Oman coastal waters to bio-optical properties.
    Al Shehhi MR; Gherboudj I; Ghedira H
    J Photochem Photobiol B; 2017 Oct; 175():235-243. PubMed ID: 28915493
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bio-optical properties and ocean color algorithms for coastal waters influenced by the Mississippi River during a cold front.
    D'Sa EJ; Miller RL; Del Castillo C
    Appl Opt; 2006 Oct; 45(28):7410-28. PubMed ID: 16983431
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling ocean surface chlorophyll-a concentration from ocean color remote sensing reflectance in global waters using machine learning.
    Kolluru S; Tiwari SP
    Sci Total Environ; 2022 Oct; 844():157191. PubMed ID: 35810889
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical Algorithms at Satellite Wavelengths for Total Suspended Matter in Tropical Coastal Waters.
    Ouillon S; Douillet P; Petrenko A; Neveux J; Dupouy C; Froidefond JM; Andréfouët S; Muñoz-Caravaca A
    Sensors (Basel); 2008 Jul; 8(7):4165-4185. PubMed ID: 27879929
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of a nonuniform vertical profile of chlorophyll concentration on remote-sensing reflectance of the ocean.
    Stramska M; Stramski D
    Appl Opt; 2005 Mar; 44(9):1735-47. PubMed ID: 15813278
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of forward reflectance models and empirical algorithms for chlorophyll concentration of stratified waters.
    Lee Z; Wang Y; Yu X; Shang S; Luis K
    Appl Opt; 2020 Oct; 59(30):9340-9352. PubMed ID: 33104650
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Algorithms for remote estimation of chlorophyll-a in coastal and inland waters using red and near infrared bands.
    Gilerson AA; Gitelson AA; Zhou J; Gurlin D; Moses W; Ioannou I; Ahmed SA
    Opt Express; 2010 Nov; 18(23):24109-25. PubMed ID: 21164758
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Analysis on Diurnal Variation of Chlorophyll-a Concentration of Taihu Lake Based on Optical Classification with GOCI Data].
    Bao Y; Tian QJ; Chen M; Lü CG
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Aug; 36(8):2562-7. PubMed ID: 30074364
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Remote chlorophyll-a estimates for inland waters based on a cluster-based classification.
    Shi K; Li Y; Li L; Lu H; Song K; Liu Z; Xu Y; Li Z
    Sci Total Environ; 2013 Feb; 444():1-15. PubMed ID: 23262320
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Space-time chlorophyll-a retrieval in optically complex waters that accounts for remote sensing and modeling uncertainties and improves remote estimation accuracy.
    He J; Chen Y; Wu J; Stow DA; Christakos G
    Water Res; 2020 Mar; 171():115403. PubMed ID: 31901508
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Progressive scheme for blending empirical ocean color retrievals of absorption coefficient and chlorophyll concentration from open oceans to highly turbid waters.
    Shang S; Lee Z; Lin G; Li Y; Li X
    Appl Opt; 2019 May; 58(13):3359-3369. PubMed ID: 31044832
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detecting the Zambezi River plume using observed optical properties.
    Siddorn JR; Bowers DG; Hoguane AM
    Mar Pollut Bull; 2001 Oct; 42(10):942-50. PubMed ID: 11693649
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Developing Benthic Class Specific, Chlorophyll-a Retrieving Algorithms for Optically-Shallow Water Using SeaWiFS.
    Blakey T; Melesse A; Sukop MC; Tachiev G; Whitman D; Miralles-Wilhelm F
    Sensors (Basel); 2016 Oct; 16(10):. PubMed ID: 27775626
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NIR-red reflectance-based algorithms for chlorophyll-a estimation in mesotrophic inland and coastal waters: Lake Kinneret case study.
    Yacobi YZ; Moses WJ; Kaganovsky S; Sulimani B; Leavitt BC; Gitelson AA
    Water Res; 2011 Mar; 45(7):2428-36. PubMed ID: 21376361
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CHLOROPHYLL ALGORITHMS FOR OCEAN COLOR SENSORS - OC4, OC5 & OC6.
    O'Reilly JE; Werdell PJ
    Remote Sens Environ; 2019 Aug; 229():32-47. PubMed ID: 31379395
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of hyperspectral indices for chlorophyll-a concentration estimation in Tangxun Lake (Wuhan, China).
    Huang Y; Jiang D; Zhuang D; Fu J
    Int J Environ Res Public Health; 2010 Jun; 7(6):2437-51. PubMed ID: 20644681
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of an explicit algorithm for remote sensing estimation of chlorophyll a using symbolic regression.
    Tang S; Michel C; Larouche P
    Opt Lett; 2012 Aug; 37(15):3165-7. PubMed ID: 22859120
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SIMBAD: a field radiometer for satellite ocean-color validation.
    Deschamps PY; Fougnie B; Frouin R; Lecomte P; Verwaerde C
    Appl Opt; 2004 Jul; 43(20):4055-69. PubMed ID: 15285097
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of inherent optical properties variability on the chlorophyll retrieval from ocean color remote sensing: an in situ approach.
    Hubert L; Lubac B; Dessailly D; Duforet-Gaurier L; Vantrepotte V
    Opt Express; 2010 Sep; 18(20):20949-59. PubMed ID: 20940990
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.