These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 19495170)

  • 1. Planar cavity modes in void channel polymer photonic crystals.
    Ventura M; Straub M; Gu M
    Opt Express; 2005 Apr; 13(7):2767-73. PubMed ID: 19495170
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiple higher-order stop gaps in infrared polymer photonic crystals.
    Straub M; Ventura M; Gu M
    Phys Rev Lett; 2003 Jul; 91(4):043901. PubMed ID: 12906658
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Planar defects in three-dimensional chalcogenide glass photonic crystals.
    Nicoletti E; Bulla D; Luther-Davies B; Gu M
    Opt Lett; 2011 Jun; 36(12):2248-50. PubMed ID: 21685982
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct laser writing of three-dimensional photonic-crystal templates for telecommunications.
    Deubel M; von Freymann G; Wegener M; Pereira S; Busch K; Soukoulis CM
    Nat Mater; 2004 Jul; 3(7):444-7. PubMed ID: 15195083
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photonic bandgap properties of void-based body-centered-cubic photonic crystals in polymer.
    Zhou G; Ventura M; Gu M; Matthews A; Kivshar Y
    Opt Express; 2005 Jun; 13(12):4390-5. PubMed ID: 19495354
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct laser writing of three-dimensional photonic crystal lattices within a PbS quantum-dot-doped polymer material.
    Ventura MJ; Bullen C; Gu M
    Opt Express; 2007 Feb; 15(4):1817-22. PubMed ID: 19532420
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polarization control of defect modes in three-dimensional woodpile photonic crystals.
    Ventura MJ; Gu M
    Opt Express; 2008 Jun; 16(12):9112-7. PubMed ID: 18545623
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of ultrafast-laser-driven microexplosional for fabricating three-dimensional void-based diamond-lattice photonic crystals in a solid polymer material.
    Zhou G; Ventura MJ; Vanner MR; Gu M
    Opt Lett; 2004 Oct; 29(19):2240-2. PubMed ID: 15524367
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication and properties of metalo-dielectric photonic crystal structures for infrared spectral region.
    Mizeikis V; Juodkazis S; Tarozaite R; Juodkazyte J; Juodkazis K; Misawa H
    Opt Express; 2007 Jun; 15(13):8454-64. PubMed ID: 19547177
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microcavities with suspended subwavelength structured mirrors.
    Naesby A; Dantan A
    Opt Express; 2018 Nov; 26(23):29886-29894. PubMed ID: 30469947
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional woodpile photonic crystal templates for the infrared spectral range.
    Mizeikis V; Seet KK; Juodkazis S; Misawa H
    Opt Lett; 2004 Sep; 29(17):2061-3. PubMed ID: 15455780
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic all-optical tuning of transverse resonant cavity modes in photonic bandgap fibers.
    Benoit G; Kuriki K; Viens JF; Joannopoulos JD; Fink Y
    Opt Lett; 2005 Jul; 30(13):1620-2. PubMed ID: 16075516
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabry-Perot Microcavity Modes in Single GaP/GaNP Core/Shell Nanowires.
    Dobrovolsky A; Stehr JE; Sukrittanon S; Kuang Y; Tu CW; Chen WM; Buyanova IA
    Small; 2015 Dec; 11(47):6331-7. PubMed ID: 26505738
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Localization of Laterally Confined Modes in a 2D Semiconductor Microcavity.
    Zhang X; Wu L; Yang W; Feng S; Wang X; Zhang X; Shang J; Huang W; Yu T
    ACS Nano; 2022 Mar; 16(3):4940-4946. PubMed ID: 35199985
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication and characterization of silicon woodpile photonic crystals with a complete bandgap at telecom wavelengths.
    Staude I; Thiel M; Essig S; Wolff C; Busch K; von Freymann G; Wegener M
    Opt Lett; 2010 Apr; 35(7):1094-6. PubMed ID: 20364228
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-quality photonic crystals with a nearly complete band gap obtained by direct inversion of woodpile templates with titanium dioxide.
    Marichy C; Muller N; Froufe-Pérez LS; Scheffold F
    Sci Rep; 2016 Feb; 6():21818. PubMed ID: 26911540
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabry-Pérot modes associated with hyperbolic-like dispersion in dielectric photonic crystals and demonstration of a bending angle sensor at microwave frequencies.
    Darthy RR; Venkateswaran C; Subramanian V; Ouyang Z; Yogesh N
    Sci Rep; 2020 Jul; 10(1):11117. PubMed ID: 32632230
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrically Tunable Dye Emission via Microcavity Integrated PDMS Gel Actuator.
    Franke M; Slowik I; Mehner PJ; Paschew G; Voigt A; Fröb H; Leo K; Richter A
    ACS Appl Mater Interfaces; 2017 Aug; 9(34):29193-29202. PubMed ID: 28783313
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering stop gaps of inorganic-organic polymeric 3D woodpile photonic crystals with post-thermal treatment.
    Li J; Jia B; Gu M
    Opt Express; 2008 Nov; 16(24):20073-80. PubMed ID: 19030093
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid electrostatics-assisted layer-by-layer assembly of near-infrared-active colloidal photonic crystals.
    Askar K; Leo SY; Xu C; Liu D; Jiang P
    J Colloid Interface Sci; 2016 Nov; 482():89-94. PubMed ID: 27494632
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.