These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 19495177)

  • 1. Chirped pulse Raman amplification with compression in air-core photonic bandgap fiber.
    de Matos C; Taylor J
    Opt Express; 2005 Apr; 13(8):2828-34. PubMed ID: 19495177
    [TBL] [Abstract][Full Text] [Related]  

  • 2. All-fiber chirped pulse amplification using highly-dispersive air-core photonic bandgap fiber.
    de Matos C; Taylor J; Hansen T; Hansen K; Broeng J
    Opt Express; 2003 Nov; 11(22):2832-7. PubMed ID: 19471402
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-kilowatt, all-fiber integrated chirped-pulse amplification system yielding 40x pulse compression using air-core fiber and conventional erbium-doped fiber amplifier.
    de Matos C; Taylor J
    Opt Express; 2004 Feb; 12(3):405-9. PubMed ID: 19474837
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 20-kW peak power all-fiber 1.57-microm source based on compression in air-core photonic bandgap fiber, its frequency doubling, and broadband generation from 430 to 1450 nm.
    de Matos CJ; Kennedy RE; Popov SV; Taylor JR
    Opt Lett; 2005 Feb; 30(4):436-8. PubMed ID: 15762453
    [TBL] [Abstract][Full Text] [Related]  

  • 5. μJ-level Raman-assisted fiber optical parametric chirped-pulse amplification.
    Morin P; Dubertrand J; Beaure d'Augeres P; Quiquempois Y; Bouwmans G; Mussot A; Hugonnot E
    Opt Lett; 2018 Oct; 43(19):4683-4686. PubMed ID: 30272714
    [TBL] [Abstract][Full Text] [Related]  

  • 6. All fiber chirped-pulse amplification system based on compression in air-guiding photonic bandgap fiber.
    Limpert J; Schreiber T; Nolte S; Zellmer H; Tünnermann A
    Opt Express; 2003 Dec; 11(24):3332-7. PubMed ID: 19471462
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High power tunable femtosecond soliton source using hollow-core photonic bandgap fiber, and its use for frequency doubling.
    Gèrôme F; Dupriez P; Clowes J; Knight JC; Wadsworth WJ
    Opt Express; 2008 Feb; 16(4):2381-6. PubMed ID: 18542316
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simultaneous direct amplification and compression of picosecond pulses to 65-kW peak power without pulse break-up in erbium fiber.
    Jasapara JC; Andrejco MJ; Nicholson JW; Yablon AD; Várallyay Z
    Opt Express; 2007 Dec; 15(26):17494-501. PubMed ID: 19551042
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonlinear dynamic of picosecond pulse propagation in atmospheric air-filled hollow core fibers.
    Mousavi SA; Mulvad HCH; Wheeler NV; Horak P; Hayes J; Chen Y; Bradley TD; Alam SU; Sandoghchi SR; Fokoua EN; Richardson DJ; Poletti F
    Opt Express; 2018 Apr; 26(7):8866-8882. PubMed ID: 29715848
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solid-core photonic bandgap fibers for cladding-pumped Raman amplification.
    Ward B
    Opt Express; 2011 Jun; 19(12):11852-66. PubMed ID: 21716418
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dispersive pulse compression in hollow-core photonic bandgap fibers.
    Laegsgaard J; Roberts PJ
    Opt Express; 2008 Jun; 16(13):9628-44. PubMed ID: 18575531
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonlinear compression in a rod-type fiber for high energy ultrashort pulse generation.
    Martial I; Papadopulos D; Hanna M; Druon F; Georges P
    Opt Express; 2009 Jun; 17(13):11155-60. PubMed ID: 19550515
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High energy ultrashort pulses via hollow fiber compression of a fiber chirped pulse amplification system.
    Hädrich S; Rothhardt J; Eidam T; Limpert J; Tünnermann A
    Opt Express; 2009 Mar; 17(5):3913-22. PubMed ID: 19259232
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diffraction limited amplification of picosecond pulses in 1170 microm2 effective area erbium fiber.
    Jasapara JC; DeSantolo A; Nicholson JW; Yablon AD; Várallyay Z
    Opt Express; 2008 Nov; 16(23):18869-74. PubMed ID: 19581977
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimizing pulse compressibility in completely all-fibered Ytterbium chirped pulse amplifiers for in vivo two photon laser scanning microscopy.
    Fernández A; Grüner-Nielsen L; Andreana M; Stadler M; Kirchberger S; Sturtzel C; Distel M; Zhu L; Kautek W; Leitgeb R; Baltuska A; Jespersen K; Verhoef A
    Biomed Opt Express; 2017 Aug; 8(8):3526-3537. PubMed ID: 28856032
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sub 25 fs pulses from solid-core nonlinear compression stage at 250 W of average power.
    Jocher C; Eidam T; Hädrich S; Limpert J; Tünnermann A
    Opt Lett; 2012 Nov; 37(21):4407-9. PubMed ID: 23114311
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microjoule-energy, 1 MHz repetition rate pulses from all-fiber-integrated nonlinear chirped-pulse amplifier.
    Kalaycioglu H; Oktem B; Senel C; Paltani PP; Ilday FO
    Opt Lett; 2010 Apr; 35(7):959-61. PubMed ID: 20364183
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chirped-pulse-amplification circuits for fiber amplifiers, based on chirped-period quasi-phase-matching gratings.
    Galvanauskas A; Harter D; Arbore MA; Chou MH; Fejer MM
    Opt Lett; 1998 Nov; 23(21):1695-7. PubMed ID: 18091887
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental demonstration of nonlinear pulse propagation in a fiber Bragg grating written in a fiber amplifier.
    Shapira YP; Smulakovsky V; Horowitz M
    Opt Lett; 2016 Jan; 41(1):5-8. PubMed ID: 26696144
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combined Yb/Nd driver for optical parametric chirped pulse amplifiers.
    Michailovas K; Baltuska A; Pugzlys A; Smilgevicius V; Michailovas A; Zaukevicius A; Danilevicius R; Frankinas S; Rusteika N
    Opt Express; 2016 Sep; 24(19):22261-71. PubMed ID: 27661960
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.