BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 19495302)

  • 1. Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 microm.
    Park B; Pierce MC; Cense B; Yun SH; Mujat M; Tearney G; Bouma B; de Boer J
    Opt Express; 2005 May; 13(11):3931-44. PubMed ID: 19495302
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-speed spectral-domain optical coherence tomography at 1.3 mum wavelength.
    Yun S; Tearney G; Bouma B; Park B; de Boer J
    Opt Express; 2003 Dec; 11(26):3598-604. PubMed ID: 19471496
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous dual-band optical coherence tomography in the spectral domain for high resolution in vivo imaging.
    Cimalla P; Walther J; Mehner M; Cuevas M; Koch E
    Opt Express; 2009 Oct; 17(22):19486-500. PubMed ID: 19997169
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of characteristics of degenerative joint disease using optical coherence tomography and polarization sensitive optical coherence tomography.
    Xie T; Guo S; Zhang J; Chen Z; Peavy GM
    Lasers Surg Med; 2006 Oct; 38(9):852-65. PubMed ID: 16998913
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Full-range polarization-sensitive swept-source optical coherence tomography by simultaneous transversal and spectral modulation.
    Yamanari M; Makita S; Lim Y; Yasuno Y
    Opt Express; 2010 Jun; 18(13):13964-80. PubMed ID: 20588529
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polarization-sensitive spectral-domain optical coherence tomography using a single line scan camera.
    Cense B; Mujat M; Chen TC; Park BH; de Boer JF
    Opt Express; 2007 Mar; 15(5):2421-31. PubMed ID: 19532479
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography.
    Wojtkowski M; Srinivasan V; Fujimoto JG; Ko T; Schuman JS; Kowalczyk A; Duker JS
    Ophthalmology; 2005 Oct; 112(10):1734-46. PubMed ID: 16140383
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation.
    Wojtkowski M; Srinivasan V; Ko T; Fujimoto J; Kowalczyk A; Duker J
    Opt Express; 2004 May; 12(11):2404-22. PubMed ID: 19475077
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polarization-sensitive optical coherence tomography system tolerant to fiber disturbances using a line camera.
    Marques MJ; Rivet S; Bradu A; Podoleanu A
    Opt Lett; 2015 Aug; 40(16):3858-61. PubMed ID: 26274678
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrahigh-speed line-scan SD-OCT for four-dimensional in vivo imaging of small animal models.
    Al-Qazwini Z; Ko ZYG; Mehta K; Chen N
    Biomed Opt Express; 2018 Mar; 9(3):1216-1228. PubMed ID: 29541514
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Choroidal analysis in healthy eyes using swept-source optical coherence tomography compared to spectral domain optical coherence tomography.
    Adhi M; Liu JJ; Qavi AH; Grulkowski I; Lu CD; Mohler KJ; Ferrara D; Kraus MF; Baumal CR; Witkin AJ; Waheed NK; Hornegger J; Fujimoto JG; Duker JS
    Am J Ophthalmol; 2014 Jun; 157(6):1272-1281.e1. PubMed ID: 24561169
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Volumetric in vivo imaging of intracochlear microstructures in mice by high-speed spectral domain optical coherence tomography.
    Subhash HM; Davila V; Sun H; Nguyen-Huynh AT; Nuttall AL; Wang RK
    J Biomed Opt; 2010; 15(3):036024. PubMed ID: 20615026
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Full-range, high-speed, high-resolution 1 microm spectral-domain optical coherence tomography using BM-scan for volumetric imaging of the human posterior eye.
    Makita S; Fabritius T; Yasuno Y
    Opt Express; 2008 Jun; 16(12):8406-20. PubMed ID: 18545554
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Visualization of phase retardation of deep posterior eye by polarization-sensitive swept-source optical coherence tomography with 1-microm probe.
    Yamanari M; Lim Y; Makita S; Yasuno Y
    Opt Express; 2009 Jul; 17(15):12385-96. PubMed ID: 19654640
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Time-domain and spectral-domain optical coherence tomography in the analysis of brain tumor tissue.
    Böhringer HJ; Boller D; Leppert J; Knopp U; Lankenau E; Reusche E; Hüttmann G; Giese A
    Lasers Surg Med; 2006 Jul; 38(6):588-97. PubMed ID: 16736504
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polarization-sensitive swept-source optical coherence tomography with continuous source polarization modulation.
    Yamanari M; Makita S; Yasuno Y
    Opt Express; 2008 Apr; 16(8):5892-906. PubMed ID: 18542701
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polarization-sensitive interleaved optical coherence tomography.
    Duan L; Marvdashti T; Ellerbee AK
    Opt Express; 2015 May; 23(10):13693-703. PubMed ID: 26074618
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spectral-domain optical coherence tomography with multiple B-scan averaging for enhanced imaging of retinal diseases.
    Sakamoto A; Hangai M; Yoshimura N
    Ophthalmology; 2008 Jun; 115(6):1071-1078.e7. PubMed ID: 18061270
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous dual-band line-field confocal optical coherence tomography: application to skin imaging.
    Davis A; Levecq O; Azimani H; Siret D; Dubois A
    Biomed Opt Express; 2019 Feb; 10(2):694-706. PubMed ID: 30800509
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimization for Axial Resolution, Depth Range, and Sensitivity of Spectral Domain Optical Coherence Tomography at 1.3 µm.
    Lee SW; Jeong HW; Kim BM; Ahn YC; Jung W; Chen Z
    J Korean Phys Soc; 2009 Dec; 55(6):2354-2360. PubMed ID: 23239900
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.