These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 19495354)
1. Photonic bandgap properties of void-based body-centered-cubic photonic crystals in polymer. Zhou G; Ventura M; Gu M; Matthews A; Kivshar Y Opt Express; 2005 Jun; 13(12):4390-5. PubMed ID: 19495354 [TBL] [Abstract][Full Text] [Related]
2. Use of ultrafast-laser-driven microexplosional for fabricating three-dimensional void-based diamond-lattice photonic crystals in a solid polymer material. Zhou G; Ventura MJ; Vanner MR; Gu M Opt Lett; 2004 Oct; 29(19):2240-2. PubMed ID: 15524367 [TBL] [Abstract][Full Text] [Related]
3. Fabrication and characterization of silicon woodpile photonic crystals with a complete bandgap at telecom wavelengths. Staude I; Thiel M; Essig S; Wolff C; Busch K; von Freymann G; Wegener M Opt Lett; 2010 Apr; 35(7):1094-6. PubMed ID: 20364228 [TBL] [Abstract][Full Text] [Related]
4. Multiple higher-order stop gaps in infrared polymer photonic crystals. Straub M; Ventura M; Gu M Phys Rev Lett; 2003 Jul; 91(4):043901. PubMed ID: 12906658 [TBL] [Abstract][Full Text] [Related]
5. Investigation of optical properties of circular spiral photonic crystals. Grossman N; Ovsianikov A; Petrov A; Eich M; Chichkov B Opt Express; 2007 Oct; 15(20):13236-43. PubMed ID: 19550592 [TBL] [Abstract][Full Text] [Related]
6. Polymer-based self-assembled photonic crystals to tune light transport and emission. Priya ; Saini SK; Nair RV Chem Commun (Camb); 2022 Feb; 58(10):1481-1494. PubMed ID: 35018400 [TBL] [Abstract][Full Text] [Related]
7. Planar cavity modes in void channel polymer photonic crystals. Ventura M; Straub M; Gu M Opt Express; 2005 Apr; 13(7):2767-73. PubMed ID: 19495170 [TBL] [Abstract][Full Text] [Related]
8. Printing of 3D photonic crystals in titania with complete bandgap across the visible spectrum. Zhang W; Min J; Wang H; Wang H; Li XL; Ha ST; Zhang B; Pan CF; Li H; Liu H; Yin H; Yang X; Liu S; Xu X; He C; Yang HY; Yang JKW Nat Nanotechnol; 2024 Dec; 19(12):1813-1820. PubMed ID: 39251863 [TBL] [Abstract][Full Text] [Related]
9. Direct laser writing of three-dimensional photonic-crystal templates for telecommunications. Deubel M; von Freymann G; Wegener M; Pereira S; Busch K; Soukoulis CM Nat Mater; 2004 Jul; 3(7):444-7. PubMed ID: 15195083 [TBL] [Abstract][Full Text] [Related]
10. Exploring for 3D photonic bandgap structures in the 11 f.c.c. space groups. Maldovan M; Ullal CK; Carter WC; Thomas EL Nat Mater; 2003 Oct; 2(10):664-7. PubMed ID: 12970758 [TBL] [Abstract][Full Text] [Related]
11. All-metallic three-dimensional photonic crystals with a large infrared bandgap. Fleming JG; Lin SY; El-Kady I; Biswas R; Ho KM Nature; 2002 May; 417(6884):52-5. PubMed ID: 11986662 [TBL] [Abstract][Full Text] [Related]
12. Direct optical fabrication of three-dimensional photonic crystals in a high refractive index LiNbO3 crystal. Zhou G; Gu M Opt Lett; 2006 Sep; 31(18):2783-5. PubMed ID: 16936891 [TBL] [Abstract][Full Text] [Related]
13. Hollow multilayer photonic bandgap fibers for NIR applications. Kuriki K; Shapira O; Hart S; Benoit G; Kuriki Y; Viens J; Bayindir M; Joannopoulos J; Fink Y Opt Express; 2004 Apr; 12(8):1510-7. PubMed ID: 19474976 [TBL] [Abstract][Full Text] [Related]
14. Photonic bandgaps of different unit cells in the basic structural unit of germanium-based two-dimensional decagonal photonic quasi-crystals. Liu J; Fan Z; Xiao H; Zhang W; Guan C; Yuan L Appl Opt; 2011 Aug; 50(24):4868-72. PubMed ID: 21857712 [TBL] [Abstract][Full Text] [Related]
15. Evidence of near-infrared partial photonic bandgap in polymeric rod-connected diamond structures. Chen L; Taverne MP; Zheng X; Lin JD; Oulton R; Lopez-Garcia M; Ho YL; Rarity JG Opt Express; 2015 Oct; 23(20):26565-75. PubMed ID: 26480169 [TBL] [Abstract][Full Text] [Related]
16. On-Demand Design of Tunable Complete Photonic Band Gaps based on Bloch Mode Analysis. Li S; Lin H; Meng F; Moss D; Huang X; Jia B Sci Rep; 2018 Sep; 8(1):14283. PubMed ID: 30250273 [TBL] [Abstract][Full Text] [Related]
17. Design, fabrication and transmitted properties of terahertz paper photonic crystals. Zhang W; Lin X; Jin Z; Ma G; Zhong M Opt Express; 2013 Nov; 21(23):27622-30. PubMed ID: 24514280 [TBL] [Abstract][Full Text] [Related]
18. Photonic band gap templating using optical interference lithography. Chan TY; Toader O; John S Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Apr; 71(4 Pt 2):046605. PubMed ID: 15903804 [TBL] [Abstract][Full Text] [Related]
19. Three-dimensional control of light in a two-dimensional photonic crystal slab. Chow E; Lin SY; Johnson SG; Villeneuve PR; Joannopoulos JD; Wendt JR; Vawter GA; Zubrzycki W; Hou H; Alleman A Nature; 2000 Oct; 407(6807):983-6. PubMed ID: 11069173 [TBL] [Abstract][Full Text] [Related]
20. Experimental observation of photonic and polaritonic gaps in a silica opal. Högström H; Ribbing CG Appl Opt; 2006 Oct; 45(29):7617-21. PubMed ID: 17068594 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]