These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 19495369)

  • 1. Electric and magnetic energy density distributions inside and outside dielectric particles illuminated by a plane electromagnetic wave.
    Kattawar G; Li C; Zhai PW; Yang P
    Opt Express; 2005 Jun; 13(12):4554-9. PubMed ID: 19495369
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energy-density distribution inside large nonabsorbing spheres by using Mie theory and geometrical optics.
    Chowdhury DQ; Barber PW; Hill SC
    Appl Opt; 1992 Jun; 31(18):3518-23. PubMed ID: 20725320
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electromagnetic energy within magnetic spheres.
    Arruda TJ; Martinez AS
    J Opt Soc Am A Opt Image Sci Vis; 2010 May; 27(5):992-1001. PubMed ID: 20448765
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Methods for describing the electromagnetic properties of silver and gold nanoparticles.
    Zhao J; Pinchuk AO; McMahon JM; Li S; Ausman LK; Atkinson AL; Schatz GC
    Acc Chem Res; 2008 Dec; 41(12):1710-20. PubMed ID: 18712883
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Maximum absorption by homogeneous magneto-dielectric sphere.
    Palvig MF; Breinbjerg O; Willatzen M
    J Opt Soc Am A Opt Image Sci Vis; 2014 Sep; 31(9):1912-8. PubMed ID: 25401428
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Invisible Mie scatterer.
    Zheng K; Zhang Z; Qin F; Xu Y
    Opt Lett; 2021 Oct; 46(20):5248-5251. PubMed ID: 34653164
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Internal electric energy in a spherical particle illuminated with a plane wave or off-axis Gaussian beam.
    Khaled EE; Hill SC; Barber PW
    Appl Opt; 1994 Jan; 33(3):524-32. PubMed ID: 20862044
    [TBL] [Abstract][Full Text] [Related]  

  • 8. General finite-difference time-domain solution of an arbitrary electromagnetic source interaction with an arbitrary dielectric surface.
    Sun W; Pan H; Videen G
    Appl Opt; 2009 Nov; 48(31):6015-25. PubMed ID: 19881669
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Internal and near-surface electromagnetic fields for a dielectric spheroid illuminated by a zero-order Bessel beam.
    Han L; Han Y; Wang J; Cui Z
    J Opt Soc Am A Opt Image Sci Vis; 2014 Sep; 31(9):1946-55. PubMed ID: 25401433
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electromagnetic energy within single-resonance chiral metamaterial spheres.
    Arruda TJ; Pinheiro FA; Martinez AS
    J Opt Soc Am A Opt Image Sci Vis; 2013 Jun; 30(6):1205-12. PubMed ID: 24323108
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Light concentration in the near-field of dielectric spheroidal particles with mesoscopic sizes.
    Mendes MJ; Tobías I; Martí A; Luque A
    Opt Express; 2011 Aug; 19(17):16207-22. PubMed ID: 21934983
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wave-amplitude synthesis applied to Gaussian-beam scattering by an off-axis sphere.
    Chrissoulidis DP; Richalot E
    J Opt Soc Am A Opt Image Sci Vis; 2017 Apr; 34(4):558-567. PubMed ID: 28375325
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mie scattering by a uniaxial anisotropic sphere.
    Geng YL; Wu XB; Li LW; Guan BR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Nov; 70(5 Pt 2):056609. PubMed ID: 15600781
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resonant microwave fields and negative magnetic response, induced by displacement currents in dielectric rings: theory and the first experiments.
    Shvartsburg AB; Pecherkin VY; Vasilyak LM; Vetchinin SP; Fortov VE
    Sci Rep; 2017 May; 7(1):2180. PubMed ID: 28526843
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electromagnetic energy in multilayered spherical particles.
    Rasskazov IL; Moroz A; Carney PS
    J Opt Soc Am A Opt Image Sci Vis; 2019 Sep; 36(9):1591-1601. PubMed ID: 31503856
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computation of radiation pressure force on arbitrary shaped homogenous particles by multilevel fast multipole algorithm.
    Yang M; Ren KF; Gou M; Sheng X
    Opt Lett; 2013 Jun; 38(11):1784-6. PubMed ID: 23722743
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Radiation losses and dark mode at light guiding by a linear chain of nanoparticles.
    Barabanenkov YN; Barabanenkov MY
    J Opt Soc Am A Opt Image Sci Vis; 2017 Mar; 34(3):321-330. PubMed ID: 28248357
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurement and analysis of angle-resolved scatter from small particles in a cylindrical microchannel.
    Venkatapathi M; Grégori G; Ragheb K; Robinson JP; Hirleman ED
    Appl Opt; 2006 Apr; 45(10):2222-31. PubMed ID: 16607988
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mie scattering of magnetic spheres.
    Tarento RJ; Bennemann KH; Joyes P; Van de Walle J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Feb; 69(2 Pt 2):026606. PubMed ID: 14995579
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of Cartesian grid configurations for application of the finite-difference time-domain method to electromagnetic scattering by dielectric particles.
    Yang P; Kattawar GW; Liou KN; Lu JQ
    Appl Opt; 2004 Aug; 43(23):4611-24. PubMed ID: 15376440
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.