These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 19495378)

  • 1. Four-wave mixing in silicon wire waveguides.
    Fukuda H; Yamada K; Shoji T; Takahashi M; Tsuchizawa T; Watanabe T; Takahashi J; Itabashi S
    Opt Express; 2005 Jun; 13(12):4629-37. PubMed ID: 19495378
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of efficient wavelength conversion by four-wave mixing in sub-micron silicon waveguides.
    Mathlouthi W; Rong H; Paniccia M
    Opt Express; 2008 Oct; 16(21):16735-45. PubMed ID: 18852783
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transmission of 2.86 Tb/s data stream in silicon subwavelength grating waveguides.
    Gao G; Luo M; Li X; Zhang Y; Huang Q; Wang Y; Xiao X; Yang Q; Xia J
    Opt Express; 2017 Feb; 25(3):2918-2927. PubMed ID: 29519008
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Continuous wave-pumped wavelength conversion in low-loss silicon nitride waveguides.
    Krückel CJ; Torres-Company V; Andrekson PA; Spencer DT; Bauters JF; Heck MJ; Bowers JE
    Opt Lett; 2015 Mar; 40(6):875-8. PubMed ID: 25768135
    [TBL] [Abstract][Full Text] [Related]  

  • 5. All-optical wavelength conversion for telecommunication mode-division multiplexing signals in integrated silicon waveguides.
    Xu Z; Jin Q; Tu Z; Gao S
    Appl Opt; 2018 Jun; 57(18):5036-5042. PubMed ID: 30117963
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wavelength conversion in highly nonlinear silicon-organic hybrid slot waveguides.
    An L; Liu H; Sun Q; Huang N; Wang Z
    Appl Opt; 2014 Aug; 53(22):4886-93. PubMed ID: 25090318
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Silicon/silicon-rich nitride hybrid-core waveguide for nonlinear optics.
    Wang X; Guan X; Gao S; Hu H; Oxenløwe LK; Frandsen LH
    Opt Express; 2019 Aug; 27(17):23775-23784. PubMed ID: 31510277
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-resonant Bragg scattering four-wave mixing at near-visible wavelengths in low-confinement silicon nitride waveguides.
    Jaber N; Madaras S; Starbuck A; Pomerene A; Dallo C; Trotter DC; Gehl M; Otterstrom N
    Opt Lett; 2024 Jun; 49(11):3146-3149. PubMed ID: 38824349
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low-loss amorphous silicon wire waveguide for integrated photonics: effect of fabrication process and the thermal stability.
    Zhu S; Lo GQ; Kwong DL
    Opt Express; 2010 Nov; 18(24):25283-91. PubMed ID: 21164876
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High efficiency wavelength conversion of 10 Gb/s data in silicon waveguides.
    Rong H; Kuo YH; Liu A; Paniccia M; Cohen O
    Opt Express; 2006 Feb; 14(3):1182-8. PubMed ID: 19503440
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultralow power continuous-wave frequency conversion in hydrogenated amorphous silicon waveguides.
    Wang KY; Foster AC
    Opt Lett; 2012 Apr; 37(8):1331-3. PubMed ID: 22513676
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On-chip all-optical wavelength conversion of multicarrier, multilevel modulation (OFDM m-QAM) signals using a silicon waveguide.
    Li C; Gui C; Xiao X; Yang Q; Yu S; Wang J
    Opt Lett; 2014 Aug; 39(15):4583-6. PubMed ID: 25078234
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-efficiency four-wave mixing in low-loss silicon photonic spiral waveguides beyond the singlemode regime.
    Ding M; Zhang M; Hong S; Zhao Y; Zhang L; Wang Y; Chen H; Yu Z; Gao S; Dai D
    Opt Express; 2022 May; 30(10):16362-16373. PubMed ID: 36221480
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient silicon wire waveguide crossing with negligible loss and crosstalk.
    Tsarev AV
    Opt Express; 2011 Jul; 19(15):13732-7. PubMed ID: 21934733
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pattern-effect-free all-optical wavelength conversion using a hydrogenated amorphous silicon waveguide with ultra-fast carrier decay.
    Suda S; Tanizawa K; Sakakibara Y; Kamei T; Nakanishi K; Itoga E; Ogasawara T; Takei R; Kawashima H; Namiki S; Mori M; Hasama T; Ishikawa H
    Opt Lett; 2012 Apr; 37(8):1382-4. PubMed ID: 22513693
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Triply resonant four-wave mixing in silicon-coupled resonator microring waveguides.
    Ong JR; Kumar R; Mookherjea S
    Opt Lett; 2014 Oct; 39(19):5653-6. PubMed ID: 25360951
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonlinear properties of dispersion engineered InGaP photonic wire waveguides in the telecommunication wavelength range.
    Dave UD; Kuyken B; Leo F; Gorza SP; Combrie S; De Rossi A; Raineri F; Roelkens G
    Opt Express; 2015 Feb; 23(4):4650-7. PubMed ID: 25836502
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Linear and nonlinear characterization of low-stress high-confinement silicon-rich nitride waveguides.
    Krückel CJ; Fülöp A; Klintberg T; Bengtsson J; Andrekson PA; Torres-Company V
    Opt Express; 2015 Oct; 23(20):25827-37. PubMed ID: 26480096
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Four-wave-mixing in the loss low submicrometer Ta₂O₅ channel waveguide.
    Wu CL; Chiu YJ; Chen CL; Lin YY; Chu AK; Lee CK
    Opt Lett; 2015 Oct; 40(19):4528-31. PubMed ID: 26421573
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design of integrated silicon waveguides for Raman-enhanced four-wave mixing in the telecom band.
    Sun S; Mashanovich GZ; Peacock AC
    Opt Express; 2024 Mar; 32(6):8715-8722. PubMed ID: 38571122
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.