These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 19495450)

  • 1. High-radix microfluidic multiplexer with pressure valves of different thresholds.
    Lee DW; Cho YH
    Lab Chip; 2009 Jun; 9(12):1681-6. PubMed ID: 19495450
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advanced combinational microfluidic multiplexer using multiple levels of control pressures.
    Lee DW; Doh I; Kim Y; Cho YH
    Lab Chip; 2013 Sep; 13(18):3658-62. PubMed ID: 23896765
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidic very large scale integration (mVLSI) with integrated micromechanical valves.
    Araci IE; Quake SR
    Lab Chip; 2012 Aug; 12(16):2803-6. PubMed ID: 22714259
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electronic control of elastomeric microfluidic circuits with shape memory actuators.
    Vyawahare S; Sitaula S; Martin S; Adalian D; Scherer A
    Lab Chip; 2008 Sep; 8(9):1530-5. PubMed ID: 18818809
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Next-generation integrated microfluidic circuits.
    Mosadegh B; Bersano-Begey T; Park JY; Burns MA; Takayama S
    Lab Chip; 2011 Sep; 11(17):2813-8. PubMed ID: 21799977
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrostatically-driven elastomer components for user-reconfigurable high density microfluidics.
    Chang MP; Maharbiz MM
    Lab Chip; 2009 May; 9(9):1274-81. PubMed ID: 19370248
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tuning microchannel wettability and fabrication of multiple-step Laplace valves.
    Takei G; Nonogi M; Hibara A; Kitamori T; Kim HB
    Lab Chip; 2007 May; 7(5):596-602. PubMed ID: 17476378
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidic flow focusing: drop size and scaling in pressure versus flow-rate-driven pumping.
    Ward T; Faivre M; Abkarian M; Stone HA
    Electrophoresis; 2005 Oct; 26(19):3716-24. PubMed ID: 16196106
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measuring rapid enzymatic kinetics by electrochemical method in droplet-based microfluidic devices with pneumatic valves.
    Han Z; Li W; Huang Y; Zheng B
    Anal Chem; 2009 Jul; 81(14):5840-5. PubMed ID: 19518139
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Passive flow-rate regulators using pressure-dependent autonomous deflection of parallel membrane valves.
    Doh I; Cho YH
    Lab Chip; 2009 Jul; 9(14):2070-5. PubMed ID: 19568677
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a pressure-driven injection system for precisely time controlled attoliter sample injection into extended nanochannels.
    Ishibashi R; Mawatari K; Takahashi K; Kitamori T
    J Chromatogr A; 2012 Mar; 1228():51-6. PubMed ID: 21733520
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfluidic chip for combinatorial mixing and screening of assays.
    Schudel BR; Choi CJ; Cunningham BT; Kenis PJ
    Lab Chip; 2009 Jun; 9(12):1676-80. PubMed ID: 19495449
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Charge-based particle separation in microfluidic devices using combined hydrodynamic and electrokinetic effects.
    Jellema LC; Mey T; Koster S; Verpoorte E
    Lab Chip; 2009 Jul; 9(13):1914-25. PubMed ID: 19532967
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Layer-to-layer parallel fluidic transportation system by addressable fluidic gate arrays.
    Morimoto T; Konishi S
    Lab Chip; 2008 Sep; 8(9):1552-6. PubMed ID: 18818812
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonlinear pressure-flow relationships for passive microfluidic valves.
    Seker E; Leslie DC; Haj-Hariri H; Landers JP; Utz M; Begley MR
    Lab Chip; 2009 Sep; 9(18):2691-7. PubMed ID: 19704985
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfluidic valves with integrated structured elastomeric membranes for reversible fluidic entrapment and in situ channel functionalization.
    Vanapalli SA; Wijnperle D; van den Berg A; Mugele F; Duits MH
    Lab Chip; 2009 May; 9(10):1461-7. PubMed ID: 19417915
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development and multiplexed control of latching pneumatic valves using microfluidic logical structures.
    Grover WH; Ivester RH; Jensen EC; Mathies RA
    Lab Chip; 2006 May; 6(5):623-31. PubMed ID: 16652177
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magnetic hydrogel nanocomposites as remote controlled microfluidic valves.
    Satarkar NS; Zhang W; Eitel RE; Hilt JZ
    Lab Chip; 2009 Jun; 9(12):1773-9. PubMed ID: 19495462
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gradient elution in microchannel electrochromatography.
    Watson MW; Mudrik JM; Wheeler AR
    Anal Chem; 2009 May; 81(10):3851-7. PubMed ID: 19438263
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrotaxis of lung cancer cells in a multiple-electric-field chip.
    Huang CW; Cheng JY; Yen MH; Young TH
    Biosens Bioelectron; 2009 Aug; 24(12):3510-6. PubMed ID: 19497728
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.